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Abstract

We consider fixed effects binary choice models with a fixed number of periods
T and without a large support condition on the regressors. If the time-varying
unobserved terms are i.i.d. with known distribution F , Chamberlain (2010)
shows that the common slope parameter is point-identified if and only if F is
logistic. However, he considers in his proof only T = 2. We show that actually,
the result does not generalize to T ≥ 3: the common slope parameter and
some parameters of the distribution of the shocks can be identified when F

belongs to a family including the logit distribution. Identification is based on
a conditional moment restriction. We give necessary and sufficient conditions
on the covariates for this restriction to identify the parameters. In addition, we
show that under mild conditions, the corresponding GMM estimator reaches
the semiparametric efficiency bound when T = 3.
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1 Introduction

In this paper, we revisit the classical binary choice model with fixed effects. Specifi-
cally, let T denote the number of periods and let us suppose to observe, for individual
i, (Yit, Xit)t=1,...,T with

Yit = 1{X ′itβ0 + γi − εit ≥ 0} (1.1)

where β0 ∈ RK is unknown and εit ∈ R is an idiosyncratic shock. The nonlinear nature
of the model and the absence of restriction on the distribution of γi conditional on
Xi := (Xi1, . . . , XiT ) renders the identification of β0 difficult. Rasch (1960) shows
that if the (εit)t=1,...,T are i.i.d. with a logitistic distribution, a conditional maximum
likelihood can be used to identify and estimate β0. Chamberlain (2010) establishes
a striking converse of Rasch’s result: if the (εit)t=1,...,T are i.i.d. with distribution F
and the support of Xi is bounded, β0 is point identified only if F is logistic. Other
papers have circumvented such a negative result by either considering large support
regressors (see in particular Manski, 1987; Honore and Lewbel, 2002) or allowing for
dependence between the shocks (see Magnac, 2004).

It turns out, however, that Chamberlain (2010) only proves his result for T = 2. And
in fact, we show that his result does not generalize to T ≥ 3. Specifically, we consider
distributions F satisfying

F (x)
1− F (x) =

τ∑
k=1

wk exp(λ0kx) or 1− F (x)
F (x) =

τ∑
k=1

wk exp(−λ0kx), (1.2)

with T ≥ τ + 1, (w1, ..., wτ ) ∈ (0,∞) × [0,∞)τ−1 and 1 = λ01 < . . . < λ0τ . We
study the identification of β0, assuming that λ0 := (λ01, . . . , λ0τ ) is known, but also of
θ0 := (β0, λ0). In both cases, the weights w1, . . . , wτ remain unknown, thus allowing
for much more flexibility on the distribution of εit than in the logit case. Our main
insight is that for any F satisfying (1.2), a conditional moment restriction holds.
We then give necessary as well as sufficient conditions for such moment restrictions
to identify β0 or θ0. The necessary conditions show for instance that with τ ≥ 2,
point identification of β0 cannot be achieved with a single, binary. Xit. On the other
hand, our sufficient conditions imply that at least if γ is constant, θ0 is identified
if conditional on (Xj,t′)(j,t′)6=(i,t), Xit takes at least 2τ values. Note that Johnson
(2004) considers the same family with τ = 2 and T = 3. However, he does not
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study the general case and does not show any formal identification result based on
the corresponding moment conditions.

Obviously, the conditional moment condition can be used to construct GMM estima-
tors. This means, in particular, that

√
n-consistent estimation is possible beyond the

logit case when T > 2, overturning again the negative results of Chamberlain (2010)
and Magnac (2004). Further, we show that if T = 3 and mild additional restric-
tions hold, the optimal GMM estimator based on our conditional moment conditions
reaches the semiparametric efficiency bound of the model. This means that at least
when T = 3, these moment conditions contain all the information of the model. We
also show through simulations that this information is sufficient to form rather precise
estimators for usual sample sizes.

The remainder of the paper is organized as follows. Section 2 gives a necessary and
sufficient conditions for point identification of β0 and the λ0j. Section 3 discusses
estimation and the semiparametric efficiency bound of the model. Section 4 reports
results from a Monte-Carlo study. Section 5 concludes. All the proofs are collected
in the appendix.

2 Identification

2.1 The model and moment conditions

We drop the subscript i in the absence of ambiguity and let Y := (Y ′1 , . . . , Y ′T )′,
X := (X ′1, . . . , X ′T )′ and Xt := (X1,t, . . . , XK,t)′. For any set A ⊂ Rp (for any p ≥ 1),
we let A∗ := A\{0} and |A| denote the cardinal of A. Hereafter, we maintain the
following conditions.

Assumption 1 (Binary choice panel model) Equation (1.1) holds and:

1. (X, γ) and (εt)1≤t≤T are independent and the (εt)1≤t≤T are i.i.d. with a known
cumulative distribution function (cdf) F .

2. For all (k, t), E[X2
k,t] <∞.
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3. β0 ∈ RK∗.

The first condition is also considered in Chamberlain (2010). The second condition
is a standard moment restriction on the covariates. Finally, we exclude in the third
condition the case β0 = 0 here. This case can be treated separately, as the following
proposition shows.

Proposition 2.1 Suppose that Assumption 1 holds, F is strictly increasing on R and
there exist (t, t′) ∈ {1, . . . , T}2 such that E[(Xt−Xt′)(Xt−Xt′)′] is nonsingular. Then
β0 = 0 if and only if

P(Yt = 1, Yt′ = 0|Yt + Yt′ = 1, Xt, Xt′) = 1
2 a.s. (2.1)

Condition (2.1) can be tested by a specification test on the nonparametric regression
of D = Yt(1−Y ′t ) on (Xt, Xt′), conditional on the event Yt+Yt′ = 1. See, e.g., Bierens
(1990) or Hong and White (1995).

Turning to identification on RK∗, we first recall the negative result of Chamberlain
(2010).

Theorem 2.2 Suppose that T = 2, Assumption 1 holds, F is strictly increasing on
R with bounded, continuous derivative and Supp(X) is compact. If, for all β0 ∈ RK∗,
β0 is identified, then F (x)/(1− F (x)) = w exp(λx) for some (w, λ) ∈ R+∗2.

Our results below imply, however, that this negative result does not generalize to
T > 2. To this end, we consider a family of distribution that includes the lo-
gistic distribution and is defined as follows.1 Hereafter, Λτ denotes a subset of
{(λ1, . . . , λτ ) ∈ Rτ : 1 = λ1 < . . . < λτ}.

Assumption 2 (“Generalized” logistic distributions) There exists a known τ ∈
{1, . . . , T−1}, unknown w := (w1, . . . , wτ ) ∈ (0,∞)×[0,∞)τ−1 and λ0 := (λ01, . . . , λ0τ )′ ∈
Λτ such that:

Either F (x)
1−F (x) = ∑τ

j=1 wj exp(λ0jx) (First type),

or 1−F (x)
F (x) = ∑τ

j=1 wj exp(−λ0jx) (Second type).
1Noteworthy, the family of “generalized” logistic distributions we consider differs from those

introduced by Balakrishnan and Leung (1988) and Stukel (1988).
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We fix min{λ01, . . . , λ0τ} to 1 as the scale of the latent variable X ′itβ0 + γi− εit is not
identified. Also, if F is of the second type, then one can show that the cdf of −εit
is of the first type. Thus, up to changing (Yt, Xt) into (1− Yt,−Xt), we can assume
without loss of generality, as we do afterwards, that F is of the first type. We shall
see that τ +1 periods are sufficient to achieve identification. Hence, we assume, again
without loss of generality, that T = τ + 1: if T > τ + 1, we can always focus on τ + 1
periods.

We consider the identification of not only β0 but also λ0. We then let θ0 := (β′0, λ′0)′

and Θ0 := (RK∗)× Λτ . We also define, for any (y, x, θ) ∈ {0, 1}T × Supp(X)×Θ0,

m(y, x; θ) :=
T∑
t=1

1{yt = 1, yt′ = 0 ∀t′ 6= t}Mt(x; θ),

where for all j ∈ {1, . . . , T}, Mj(x; θ) is the (1, j)-cofactor of the matrix

1 . . . 1
exp(λ1x

′
1β) . . . exp(λ1x

′
Tβ)

... ...
exp(λτx′1β) . . . exp(λτx′Tβ)

 .

As we also consider identification of β0 alone, we also let, with a slight abuse of
notation, m(y, x; β) := m(y, x; (β′, λ′0)′). Our first result shows that the conditional
moment of m(Y,X; θ0) is zero.

Theorem 2.3 If Assumptions 1-2 hold, we have, almost surely,

E[m(Y,X; θ0)|X] = 0. (2.2)

Theorem 2.3 shows there exists a known moment condition which potentially identifies
θ0 in a model more general than the logistic one. It shows that, as the number of
periods T increases, there is an increasing class of distributions F for which β0 (or
θ0) can be point identified. This is consistent with the idea that if T = ∞, β0 is
point identified for any F , by using variations in Xt of a single individual. It also
complements the results of Chernozhukov et al. (2013) showing that bounds on β0

for general F shrink quickly as T increases.
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Note that the result holds also with T = τ + 1 = 2 (or, more generally, with T > τ =
1). In such a case, the conditional moment condition can be written

E [1{Y1 > Y2} exp(X ′2β0)− 1{Y2 > Y1} exp(X ′1β0)|X] = 0.

This conditional moment generate the first-order conditions of the theoretical condi-
tional likelihood, since the latter is equivalent to

E
[

(X1 −X2)
exp(X ′1β0) + exp(X ′2β0) (1{Y1 > Y2} exp(X ′2β0)− 1{Y2 > Y1} exp(X ′1β0))

]
= 0.

2.2 Necessary and sufficient conditions for identification

The discussion above implies that with T = τ + 1 = 2, β0 is identified by (2.2) as
soon as E [(X1 −X2)(X1 −X2)′] is nonsingular. We now consider sufficient conditions
for (2.2) to identify θ0 (or β0) more generally, not only with τ = 1. The moment
conditions in the general case are highly nonlinear, making it difficult to provide a
complete characterization. First, we consider the case where γ is actually constant.2

For any (k, t) ∈ {1, . . . , K} × {1, . . . , T}, we let Xk := (Xk,1, . . . , Xk,T ), X−k :=
(Xk′,t)k′ 6=k,t=1,...,T and Xk

−t = (Xk,s)s 6=t.

Proposition 2.4 Let assume that Assumptions 1-2 are satisfied, T = τ + 1 ≥ 2,
V(γ) = 0 and for all (k, t) ∈ {1, . . . , K} × {1, . . . , T}, |Supp(Xk

t |X−k, Xk
−t)| ≥ 2τ .

Then,
E[m(Y,X; θ)|X] = 0 a.s.⇒ θ = θ0. (2.3)

Proposition 2.4 shows that in the absence of fixed effects, the conditional moment
condition E[m(Y,X; θ0)|X] = 0 is sufficient to identify θ0 under mild restrictions on
the distribution of X.3 In particular, all components of X may be discrete. The result
relies in particular on the fact that for any λ ∈ Λτ , the family of functions (v 7→
exp(λjv))j=1,...,τ forms a Chebyshev system (see, e.g., Krein and Nudelman, 1977,

2Because we consider identification based on (2.2) alone, we suppose this additional restriction
to be unknown by the econometrician.

3A close inspection of the proof reveals that the support restrictions on X could actually be
weakened further, but at the expense of complicating the condition.
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Chapter II for the formal definition). This implies that any non-zero “polynomial”
v 7→ ∑T

j=1 aj exp(λjv) does not vanish more than T − 1 times.

We now investigate cases where γ is nondegenerate and possibly correlated with X,
which is more realistic in practice. For any (t, `, x) ∈ {1, . . . , T} × {1, . . . , τ} ×
Supp(X), let us define

at,`,x : v 7→ E

 exp(λ0`γ)
C(γ, x; θ0, t)

(
1 +∑τ

j=1 wjδj(x; θ0, t) exp(λ0j(β0kv + γ))
)∣∣∣∣∣X = x


where C(γ, x; θ0, t) := ∏

t′ 6=t(1+∑τ
j=1 wj exp(λ0j(x′t′β0+γ))) and δj(x; θ0, t) := exp(λ0j×

x′tβ0). We consider the following conditions.4

Assumption 3 1. There exist (t0, t1) ∈ {1, ..., T}2 such that E[(Xt0 −Xt1)(Xt0 −
Xt1)′] is nonsingular.

2. There exists k ∈ {1, . . . , K} such that β0k 6= 0 and almost surely, Xk|X−k

admits a density with respect to the Lebesgue measure.

Assumption 4 1. Xk ⊥⊥ γ|X−k.

2. There exists some t2 ∈ {1, . . . , T}\{t0, t1} such that, for all (βk, λ) ∈ (R∗)×Λτ ,
{λ1βk, . . . , λτβk} ∩ {λ01β0k, . . . , λ0τβ0k} = ∅ implies that the τ(τ + 1) functions

{at2,`,x(v) exp(λ0`β0kv), at2,`,x(v) exp(λ1βkv), . . . , at2,`,x(v) exp(λτβkv)}`=1,...,τ

form a free family of functions over R for almost all x ∈ Supp(X).

Assumption 4′ 1. Xk ⊥⊥ γ|X−k.

2. There exists some t2 ∈ {1, . . . , T}\{t0, t1} such that, for all βk ∈ R∗, {λ01βk, . . . ,

λ0τβk} ∩ {λ01β0k, . . . , λ0τβ0k} = ∅ implies that the τ(τ + 1) functions

{at2,`,x(v) exp(λ0`β0kv), at2,`,x(v) exp(λ01βkv), . . . , at2,`,x(v) exp(λ0τβkv)}`=1,...,τ

form a free family of functions over R for almost all x ∈ Supp(X).
4Again, Assumptions 3 and 4 (or 3 and 4’) are assumed to be unknown by the econometrician.
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Assumption 3.1 is necessary to ensure the unique representation of the index difference
(Xt0 − Xt1)′β0. Assumption 3.2 imposes that at least one regressor is continuously
distributed. Assumption 4 and 4’ are very close, with Assumption 4’ being a weaker
form of Assumption 4 that turns out to be sufficient to identify β0 only, when λ0 is
supposed to be known. When combined with Assumption 3.2, Assumption 4.1 (or
Assumption 4’.1) is similar, but less restrictive, than Assumption R.iii of Magnac and
Maurin (2007) or Assumptions A.2-3 in Honore and Lewbel (2002). Importantly, it
does not imply any large support restriction. Assumption 4.2 and 4’.2 are high-level
conditions that we discuss below.

Proposition 2.5 Suppose that Assumptions 1-3 hold and T = τ + 1. Then:

1. If Assumption 4 holds as well, then (2.3) holds.

2. If Assumption 4’ holds as well,

E[m(Y,X; β)|X] = 0 a.s.⇒ β = β0. (2.4)

The proof relies on two main ingredients. The first is, again, the upper bound on
the number of roots of exponential “polynomials”. The second is analyticity of the
conditional moment as a function of Xk,t. By a continuation theorem on real analytic
functions (see e.g. Corollary 1.2.5 in Krantz and Parks, 2002), this allows us to
extend the conditional moment function from any x ∈ Supp(X) to any x′ such that
x′j,t′ = xj,t′ for all (j, t′) 6= (k, t) and x′k,t ∈ R.

Assumption 4.2 and 4’.2 are high-level and technical. We conjecture that they hold
under mild restrictions on the distribution of γ. The following proposition, restricted
to T = 3 and a binary γ, substantiates this claim.

Proposition 2.6 Let T = τ + 1 = 3 and Λτ ⊂ {(1, λ2) : λ2 > 4}. If |Supp(γ|X)| = 2
almost surely, Assumption 4’.2 is satisfied.

We now turn to necessary conditions for (2.4) to hold. We consider the following
assumption.

Assumption 5 P
(
X ∈

{
x ∈ RKT : |{x1, . . . , xT}| = T

})
> 0.
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Assumption 5 imposes that there are trajectories of X = (X1, . . . , XT ) with distinct
values at all periods. Since we focus here on T ≥ 3, this excludes in particular the
case where Xt is binary. But contrary to Assumption 3, Assumption 5 does not
exclude the case where all covariates are discrete, and can be expected to hold if
|Supp(Xt)| ≥ T . The following proposition shows that Assumption 5 is actually
necessary for the conditional moment condition E[m(Y,X; β0)|X] = 0 to identify β0.

Proposition 2.7 Suppose that Assumptions 1-2 are satisfied and T = τ + 1 ≥ 3.
Then, if (2.4) holds, Assumption 5 holds as well.

3 Estimation

In the following, we assume that λ0 is known and focus on the estimation of β0.5 The
conditional moment condition (2.4) can be transformed into unconditional conditions
such that standard GMM estimators can easily be constructed. Letting g(X) ∈ RK ,
such estimators β̂ satisfy

β̂ = arg min
β∈B

(
1
n

n∑
i=1

g(Xi)m(Yi, Xi; β)
)′ ( 1

n

n∑
i=1

g(Xi)m(Yi, Xi; β)
)
, (3.1)

where B is a compact subset of RK∗. The optimal estimator among this class is
obtained by choosing g?(X) := R(X)/Ω(X), with R(X) = E[∇βm(Y,X; β0)|X]
and Ω(X) = V[m(Y,X; β0)|X] (see Chamberlain, 1987). Given that R(X) and
Ω(X) are unknown, an asymptotically efficient GMM estimator can be obtained
in two steps. In a first step, g(X) is chosen arbitrarily and we compute the cor-
responding estimator β̂1. In a second step, we compute ĝ?(X) = R̂(X)/Ω̂(X), where
R̂(x) = Ê[∇βm(Y,X; β̂1)|X] and Ω̂(X) = V̂[m(Y,X; β̂1)|X] are standard nonpara-
metric estimators (e.g., kernel or series estimators). We then compute the estimator
β̂? based on ĝ?(X). Under regularity conditions displayed in, e.g., Newey (1990), we
have

√
n(β̂? − β0) d−→ N (0, V0), (3.2)

5Estimation of θ0 could be performed in the same way as that of β0, but it is unclear to us whether
the corresponding estimator would reach the semiparametric efficiency bound of θ0, something we
prove below for β0.
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where V0 := E [Ω(X)−1R(X)R(X)′]−1. To obtain this result, two assumptions are
worth mentioning. The first is an identifiability condition when using the optimal
instruments:

E[g?(X)m(Y,X; β)] = 0⇒ β = β0.

Such a condition may fail to hold, as shown by Dominguez and Lobato (2004). Other
estimators relying on the full set of moments can be used to prevent this identification
failure (see in particular Dominguez and Lobato, 2004; Hsu and Kuan, 2011; Lavergne
and Patilea, 2013). The second condition is that E [Ω(X)−1R(X)R(X)′] exists and is
nonsingular. Nonsingularity holds if and only if E [R(X)R(X)′] is nonsingular, which
is a local identification condition.

We now establish that with T = τ + 1 = 3, the semiparametric efficiency bound
actually coincides with the asymptotic variance V0 of the optimal GMM estimator.
The result holds under the following condition.

Assumption 6 1. E [Ω−1(X)R(X)R(X)′] exists and is nonsingular.

2. |Supp(γ|X)| ≥ 10 almost surely.

We already discuss the first condition. The second condition we impose is weaker
than that imposed by Chamberlain (2010), namely Supp(γ|X) = R.

Theorem 3.1 Assume T = τ + 1 = 3, λ0 is known with λ02 6= 2 and Assumptions 1-
3 and 6 hold. Then the semiparametric efficiency bound of β0, V ?(β0), is finite and
satisfies V ?(β0) = V0.

Intuitively, this result states that all the information content of the model is included
in the conditional moment restriction E[m(Y,X; β0)|X] = 0. It complements, for
T = τ +1 = 3, the result of Hahn (1997), which states that the conditional maximum
likelihood estimator is the efficient estimator of β0 if F is logistic. The difference
between the two results is that here, (w1, w2) is unknown rather than known and
equal to (1, 0).
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4 Monte-Carlo simulations

We conduct numerical simulations in order to characterize the finite sample perfor-
mance of β̂?. We let T = τ + 1 = 3 and consider both (w1, w2) = (0.1, 0.9) and
(w1, w2) = (0.2, 0.8). We fix λ0 = (1, 5) and suppose it is known. Next, we let K = 1
and β0 = 1, with Xt ∈ {−1, 0, 1} (note that a binary Xt ). We first draw X1 uni-
formly over {−1, 0, 1}, then draw X2 uniformly over {−1, 0, 1}\{X1} and finally let
X3 be the remaining element in {−1, 0, 1}\{X1, X2}. Note that Assumption 3.2 fails
to hold with such a X. But as explained above, this condition is only sufficient, not
necessary for identification. We then consider five data generating processes (DGPs)
where the r.v. γ is:

i. Constant: γ = 0.

ii. Discrete and independent of X: P(γ = −1/2|X) = P(γ = 0|X) = P(γ =
1/2|X) = 1/3.

iii. Continuous and independent of X: γ|X ∼ U([−1/4, 1/4]).

iv. Discrete and correlated with X: γ = UZ where (U,Z) ∈ {−1/2, 1/2} × {0, 1}
and P(U = 1/2|X) = 0.5 +X1X2/3, P(Z = 1|X,U) = 0.9.

v. Continuous and correlated with X: γ = UZ where U |X ∼ U([0, 1/2]) and
Z ∈ {−1/2, 1/2}, P(Z = 1/2|X,U) = 0.5 +X1X2/3.

Hereafter, we consider samples of size n ∈ {500; 1, 000; 2, 000; 4, 000}. With the
DGPs above, the subsample effectively used in the estimation, namely {i ∈ {1, . . . , n} :∑3
t=1 Yit = 1}, represents on average 47.8% of the initial sample.

To compute the optimal GMM estimator, the usual practice is to estimate ĝ? using an
inefficient GMM estimator. However, in the current set-up, such estimators are often
equal to zero if g is not chosen appropriately. To overcome this finite sample issue,
we first use a rough estimator g̃? of g? based on the conditional maximum likelihood
estimator (β̂1) of β0, assuming a logistic distribution. Then, using g̃?, we obtain
an initial GMM estimator β̃, which allows us to compute a second (and consistent)
estimator of ĝ?. Finally, we compute the asymptotically optimal GMM estimator β̂?

using ĝ?.
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Table 1: Simulation Results for β̂?

w1 = 0.1 w1 = 0.2

DGP n Bias RMSE Bias RMSE

i. 500 −0.1949 0.2724 −0.2245 0.3119
1, 000 −0.1692 0.2278 −0.1964 0.2664
2, 000 −0.0934 0.1722 −0.1137 0.1976
4, 000 −0.0002 0.0622 −0.0159 0.0831

ii. 500 −0.2784 0.3742 −0.3608 0.4544
1, 000 −0.2486 0.3311 −0.3118 0.3999
2, 000 −0.1508 0.2549 −0.1823 0.3018
4, 000 −0.0403 0.1220 −0.0872 0.1909

iii. 500 −0.2060 0.2892 −0.2467 0.3405
1, 000 −0.1795 0.2460 −0.2153 0.2910
2, 000 −0.0991 0.1775 −0.1269 0.2179
4, 000 −0.0066 0.0777 −0.0229 0.0830

iv. 500 −0.2953 0.3870 −0.3839 0.4719
1, 000 −0.2596 0.3607 −0.3178 0.4247
2, 000 −0.1296 0.2409 −0.1546 0.2876
4, 000 −0.0704 0.1544 −0.1500 0.2685

v. 500 −0.2084 0.2875 −0.2510 0.3418
1, 000 −0.1785 0.2469 −0.2161 0.2938
2, 000 −0.0913 0.1734 −0.1176 0.2103
4, 000 −0.0066 0.0696 −0.0288 0.0931

Notes: β0 = 1, λ0 = (1, 5), w2 = 1 − w1. The optimal in-
struments are estimated using conditional means and β̂1. The
results are based on 10, 000 sample replications.

For each DGP and the two values of w1, Table 1 reports the estimated bias and root
mean square error (RMSE) of β̂?. The estimator β̂? is precise in the absence of fixed
effects. When fixed effects are introduced the bias and RMSE vary with (w, λ0).
Overall, the results suggest that for a given sample size n, the bias and RMSE are
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lower when w2−w1 increases, when |Supp(γ|X)| increases or when γ is uncorrelated
with X. The second case is consistent with our conjecture about Assumption 4.

5 Conclusion

This paper addresses the problem of point identification of the common slope pa-
rameter in a static panel binary model with exogenous and bounded regressors. We
derive necessary and sufficient conditions for global point identification based on a
conditional moment restriction when T ≥ 3 and the unobserved terms belong to a
family of generalized logistic distribution that we introduce. Our results generalize
those from Chamberlain (2010) and can be used to build a GMM estimator that
reaches the semiparametric efficiency bound when T = 3. Our paper leaves a few
questions unanswered. A first one is whether the family of F considered here is the
only one for which point identification can be achieved. Another one is whether the
GMM estimator still reaches the semiparametric efficiency bound when T > 3. Both
questions raise difficult issues and deserve future investigation.
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A Proofs of the results

A.1 Proposition 2.1

The sufficient part is obvious. To prove necessity, suppose β0 6= 0. Since E[(Xt −
Xt′)(Xt − Xt′)′] is non singular, there exist a subset S of the support of (Xt, Xt′)
such that P(S) > 0 and for all (xt, xt′) ∈ S, (xt − xt′)′β0 has constant, non-zero sign.
Without loss of generality let us assume (xt−xt′)′β0 > 0. Let G(x) = F (x)/(1−F (x)).
Because G is strictly increasing, we have, for all g ∈ R,

G(x′tβ0 + g) > G(x′t′β0 + g).

Equivalently,

F (x′tβ0 + g)(1− F (x′t′β0 + g)) > F (x′t′β0 + g)(1− F (x′tβ0 + g)).

In other words,

P(Y1 = 1, Yt′ = 0|Xt = xt, Xt′ = x′t, γ = g) > P(Y1 = 0, Yt′ = 1|Xt = xt, Xt′ = x′t, γ = g),

and the result follows by integration over g.

A.2 Theorem 2.3

Let us define

A(x, γ; θ) :=



∑τ
j=1 wj exp(λj(x′1β + γ)) . . .

∑τ
j=1 wj exp(λj(x′Tβ + γ))

exp(λ1x
′
1β) . . . exp(λ1x

′
Tβ)

... ...
exp(λτx′1β) . . . exp(λτx′Tβ)

 .

Let Ai(x, γ; θ) denote the ith line of A(x, γ; θ). Then

A1(x, γ; θ) =
τ∑
j=1

wj exp(λjγ)Aj+1(x, γ; θ).

It follows that for all (x, γ) ∈ Supp(X)× R,

detA(x, γ; θ0) = 0.
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By Assumption 2 and since we focus on the first type therein, we have G(x) :=
F (x)/(1−F (x)) = ∑T−1

j=1 wj exp(λ0jx). Now, developping detA(x, γ; θ0) with respect
to the first row yields, by definition of the function m,

∑
y∈{0,1}T

m(y, x; θ0)
∏
t:yt=1

G(x′tβ0 + γ) = 0.

Multiplying this equality by ∏t(1− F (x′tβ0 + γ)) we obtain

∑
y∈{0,1}T

m (y, x; θ0)
∏
t:yt=1

F (x′tβ0 + γ)
∏
t:yt=0

(1− F (x′tβ0 + γ))
 = 0.

This equation is equivalent to E [m(Y,X; θ0)|X, γ] = 0 a.s. The result follows by
integration over γ.

A.3 Proposition 2.4

Let us suppose that θ = (β, λ) ∈ Θ0 satisfies

E [m(Y,X; θ)|X] = 0, (A.1)

and let us show that θ = θ0. Since γ = γ0 almost surely for some γ0, Equation (A.1)
is equivalent to:

τ∑
i=1

wi exp(λ0iγ0) det
(
Ai(x)

)
= 0, (A.2)

for almost all x ∈ Supp(X), with

Ai(x) :=



exp(λ0ix
′
1β0) . . . exp(λ0ix

′
Tβ0)

exp(λ1x
′
1β) . . . exp(λ1x

′
Tβ)

... ...
exp(λτx′1β) . . . exp(λτx′Tβ)

 .

Let S denote the subset of Supp(X) on which (A.2) holds. Further, let X (β) = {x ∈
S : |{x′2β, . . . , x′Tβ}| = T − 1}. We first we show that

P(X (β)) > 0. (A.3)
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This is trivial for T = 2. Otherwise, note first that there exists k0 such that β0k0 6= 0.
Then:

X (β) =
{
x ∈ S : ∀t ≥ 3, xk0,t 6∈

{
x′2β0 − x′−k0,3β0−k0

β0k0

, . . . ,
x′t−1β0 − x′−k0,tβ0−k0

β0k0

}}
.

The condition |Supp(Xk0,t|X2, . . . , Xt−1, X
−k0
t )| ≥ 2τ for all t ≥ 3 (with X−k0

t =
(Xj,t)j 6=k0) ensures that almost surely,

Supp(Xk0,t|X2, . . . , Xt−1, X
−k0
t ) 6⊂

{
X ′2β0 −X ′−k0,tβ0−k0

β0k0

, . . . ,
X ′t−1β0 −X ′−k0,tβ0−k0

β0k0

}

and thus (A.3) holds.

Now fix x ∈ X (β) and k ∈ {1, . . . , K}. Using again |Supp(Xk,t|X−k, Xk
−1)| ≥ 2τ ,

there exists A ⊂ R, |A| ≥ 2τ , such that for all x̃ verifying x̃j,t = xj,t for j 6= k or t 6= 1
and x̃k,1 = xk,1 + v, v ∈ A, we have x̃ ∈ S. Applying (A.2) to such x̃ and developing
each determinant with respect to the first column, we obtain that for all v ∈ A,

τ∑
j=1

(−1)j exp(λjx′1β)
(

τ∑
i=1

wi exp(λ0iγ0) det
(
Ai{j+1,1}(x)

))
exp(λjβkv)

+
τ∑
i=1

wi exp(λ0i(x′1β0 + γ0)) det
(
Ai{1,1}(x)

)
exp(λ0iβ0kv) = 0, (A.4)

where Aij,k(x) denote the sub-matrix of Ai(x) once row j and column k have been
removed.

We first assume that β0k 6= 0. Suppose that there exists i such that for all j ∈
{1, . . . , τ}, λjβk 6= λ0iβ0k. The left hand-side of (A.4) is a polynomial of exponential
functions with at most 2τ distinct exponential functions and it is equal to 0 on 2τ
distinct points v. Then, by Lemma B.1 and because the coefficient of exp(λ0iβ0kv) is
wi exp(λ0i(x′1β0 + γ0)) det

(
Ai{1,1}(x)

)
, we have

det
(
Ai{1,1}(x)

)
= 0. (A.5)

Now, because |{x′2β, . . . , x′Tβ}| = T − 1, the definition of Chebyshev systems implies
that det

(
A1
{1,1}

)
6= 0, a contradiction. Hence, for all i ∈ {1, . . . , τ}, there exists `(i)

such that λ`(i)βk = λ0iβ0k. Because λ`(i) and λ0i are both positive, the sign of βk
is then equal to the sign of β0k. Let us suppose without loss of generality (since,
β0k 6= 0) that β0k > 0. Then λ01β0k < . . . < λ0τβ0k, implying, since βk > 0, that
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λ`(1) < . . . < λ`(τ). Hence, `(i) = i for all i ∈ {1, . . . , τ} and i = 1 yields βk = β0k. In
turn, this latter equality implies that λ = λ0.

We now consider the case β0k = 0. Let us assume that βk 6= 0. The left hand-side of
(A.4) is a polynomial of exponential functions with at most τ +1 distinct exponential
functions (since λjβk 6= 0 for all j) and it is equal to 0 on 2τ distinct points v. Then,
by Lemma B.1,

τ∑
i=1

wi exp(λ0i(x′1β0 + γ0)) det
(
Ai{1,1}(x)

)
= 0.

Now, notice that det
(
Ai{1,1}(x)

)
6= 0 does not depend on i. As a result,

τ∑
i=1

wi exp(λ0i(x′1β0 + γ0)) = 0,

which is a contradiction. Hence βk = 0 = β0k. Note that we do not identify λ0 in this
case, but its identification is achieved by the previous paragraph, since there exists
k0 such that β0k0 6= 0. This concludes the proof.

A.4 Proposition 2.5

1. Without loss of generality, we assume hereafter that t2 = 1 so that t0, t1 ≥ 2. Let
us suppose that θ = (β, λ) ∈ Θ0 satisfies

E [m(Y,X; θ)|X] = 0, (A.6)

and let us show that θ = θ0. Equation (A.6) is equivalent to

τ∑
i=1

wiE

 exp(λ0iγ)
C(γ, x; θ0, 1)

(
1 +∑τ

j=1 wj exp(λ0j(x′1β0 + γ))
)∣∣∣∣∣X = x



× det



exp(λ0ix
′
1β0) . . . exp(λ0ix

′
Tβ0)

exp(λ1x
′
1β) . . . exp(λ1x

′
Tβ)

... ...
exp(λτx′1β) . . . exp(λτx′Tβ)

 = 0, (A.7)

for almost all x ∈ Supp(X). Let S denote the subset of Supp(X) on which (A.7)
holds. Further, let X (β) = {x ∈ S : |{x′1β, . . . , x′Tβ}| = T}. By Assumption 3,
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P(X (β)) = 1. Now, fix x ∈ X (β). By Assumption 3 again, there exist ε ≤ 0 ≤ ε with
max(−ε, ε) > 0, such that for almost every x̃ verifying x̃t = xt for t > 1, x̃j1 = xj1

for j 6= k, |x̃k,1 − xk,1| ∈ [ε, ε], we have x̃ ∈ Supp(X). Applying (A.7) to such x̃ and
using Xk ⊥⊥ γ|X−k, we obtain

τ∑
i=1

wia1,i,x(v) det
(
Ai(v)

)
= 0, (A.8)

for almost every v ∈ [ε, ε], with

Ai(v) =



exp(λ0i(x′1β0 + β0kv)) . . . exp(λ0ix
′
Tβ0)

exp(λ1(x′1β + βkv)) . . . exp(λ1x
′
Tβ)

... ...
exp(λτ (x′1β + βkv)) . . . exp(λτx′Tβ)

 .

Let AiJ,K(v) denote the sub-matrix of Ai(v) once the rows and columns with indices
in J ⊂ {1, . . . , T} and K ⊂ {1, . . . , T}, respectively, have been removed. We simply
note AiJ,K when AiJ,K(v) does not depend on v. Then, developping each Ai(v) with
respect to the first column, we obtain, for almost every v ∈ [ε, ε],

τ∑
i=1

wi

[
det

(
Ai{1},{1}

)
exp(λ0i(x′1β0 + β0kv))a1,i,x(v)

+
τ∑
j=1

(−1)j det
(
Ai{j+1},{1}

)
exp(λj(x′1β + βkv))a1,i,x(v)

]
= 0. (A.9)

Now, by Lemma B.2, the left-hand side of (A.9) is real analytic, where we recall that
a function f : I → R is real analytic if f is equal to its Taylor series at every point of
I. Then, by the continuation theorem for real analytic functions (see e.g. Corollary
1.2.5 in Krantz and Parks, 2002), (A.8) holds for all v ∈ R. Now, fix i ∈ {1, . . . , τ}
and let us assume that there is no t(i) ∈ {1, . . . , τ} such that λt(i)βk = λ0iβ0k. Then,
Assumption 4.2 ensures that the functions of v in (A.8) are linearly independent, so
that

det
(
Ai{t},{1}

)
= 0, ∀t ∈ {1, . . . , T}, (A.10)

Because |{(x′1β, . . . , x′Tβ}| = T , we have, by definition of Chebyshev systems,

det
(
Ai{1},{1}

)
6= 0,

20



contradicting equation (A.10). Hence, for all i ∈ {1, . . . , τ}, there exists t(i) such that
λt(i)βk = λ0iβ0k. Because λt(i) and λ0i are both positive, the sign of βk is then equal
to the sign of β0k. Let us suppose without loss of generality (since, by Assumption 3,
β0k 6= 0) that β0k > 0. Then λ01β0k < . . . < λ0τβ0k, implying, since βk > 0, that
λt(1) < . . . < λt(τ). Hence, t(i) = i for all i ∈ {1, . . . , τ} and i = 1 yields βk = β0k. In
turn, this latter equality implies that λ = λ0.

Now, in (A.8), λ0i = λi for all i ∈ {1, . . . , τ} and β0k = βk. With λ replaced by λ0 and
βk replaced by β0k, (A.9) and Assumption 4.2 still imply that for all i ∈ {1, . . . , τ},

det
(
Ai{t},{1}

)
= 0, ∀t ∈ {2, . . . , T}\{i+ 1}. (A.11)

Because |{x′1β, . . . , x′Tβ}| = T , we have, by definition of Chebyshev systems,

det
(
Ai{1,t},{1,n}

)
6= 0, ∀(t, n) ∈ {2, . . . , T}\{i+ 1} × {2, . . . , T}.

This, together with (A.11), implies that for t ∈ {2, . . . , T}\{i + 1} the first row of
Ait,1 is a non-trivial linear combination of the other rows. In other words, for all t 6= i,
there exists a non-zero vector (wt,j)j=1,...,τ with wt,t = 0 such that for all s ≥ 2,

exp(λ0ix
′
sβ0) =

τ∑
j=1

wt,j exp(λ0jx
′
sβ). (A.12)

Let define Pt(u) = ∑τ
j=1 wt,j exp(λ0ju) for all t ∈ {1, . . . , τ}. Then, for all s ≥ 2,

P1(x′sβ) = . . . = Pi−1(x′sβ) = Pi+1(x′sβ) = . . . = Pτ (x′sβ).

Moreover, because x ∈ X (β), we have |{x′2β, . . . , x′Tβ}| = τ . Then, by Lemma B.1,
P2 = . . . = PT . But this implies that for all (t, j) ∈ {1, . . . , τ}\{i}, wt,j = wj,j =
0. Therefore, by (A.12) again, there exists strictly positive constants (c1, . . . , cτ ) ∈
(0,∞)τ such that exp(λ0ix

′
tβ0) = ci exp(λ0ix

′
tβ) for all t ≥ 2. In other words, there

exists K ∈ R such that for all t ≥ 2,

x′t(β0 − β) = K. (A.13)

This equality holds in particular for periods t0 and t1 in Assumption 3.1. Moreover,
because x ∈ X (β) was arbitrary and P(X (β)) = 1, this implies that almost surely,
(Xt0 −Xt1)′(β0 − β) = 0. The first part of Assumption 3 implies β = β0, which ends
the proof.

21



2. We follow the exact same reasoning, except that λ in θ is replaced by λ0. In
particular, we obtain the same equation as (A.9) with λ0 in place of λ. Then (A.10)
holds under Assumption 3’.2 instead of Assumption 3.2. This implies that βk = β0k.
The proof that βj = β0j for j 6= k is exactly as above.

A.5 Proposition 2.6

We leave x and the conditioning on X = x implicit here. We also let C(γ) :=
C(γ, x; θ0, t2), αi := wiδi(x; θ0, t2), ai := λ0iβk, bi := λ0iβ0k, (γ1, γ2) := Supp(γ|X =
x) and (q1, q2) denote the corresponding probabilities. We must prove that for all
µ = (µj`)j=0,1,2,`=1,2, if for all v ∈ R,

2∑
j=1

eajv
2∑
p=1

qp
C(γp)

1
1 +∑2

i=1 αie
λ0iγpebiv

( 2∑
`=1

µj`e
λ0`γp

)

+
2∑
`=1

eλ0`β0kv
2∑
p=1

qpµ0`e
λ0`γ`

C(γp)
1

1 +∑2
i=1 αie

λ0iγpebiv
= 0,

then µ = 0. Let us define, for p ∈ {1, 2},

fj,p(v) =

∣∣∣∣∣∣∣
eajv

1+
∑τ

i=1 αie
λ0iγpebiv

if j ∈ {1, 2},
ebj−τ v

1+
∑τ

i=1 αie
λ0iγpebiv

if j ∈ {3, 4},

Gj,p(µ) =

∣∣∣∣∣∣
qp

C(γp)
∑τ
`=1 µj`e

λ0`γp if j ∈ {1, 2},
qpµ0j−τ e

λ0j−τ γj−τ

C(γp) if j ∈ {3, 4}.

Then Assumption 4’.2 can be rewritten as follows:

4∑
j=1

2∑
p=1

Gj,p(µ)fj,p(v) = 0 ∀v ∈ R⇒ µ = 0. (A.14)

To prove (A.14), first remark that if Gj,p(µ) = 0 for all (j, p), then µ = 0. This is
trivial for the µ0`. For the µj`, j ≥ 1, this follows from Lemma B.1. Thus, Assumption
4 holds if the family (fj,p)j=1,...,4,p=1,2 is free, i.e. if for all ν = (νij)i=1,...,4,j=1,2

4∑
j=1

2∑
p=1

νjpfj,p(v) = 0 ∀v ∈ R⇒ ν = 0.
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Equivalently, we need to show that if for all v ∈ R,

(ν11 + ν12)ea1v + α1(ν11e
λ01γ2 + ν12e

λ01γ1)e(a1+b1)v + α2(ν11e
λ02γ2 + ν12e

λ02γ1)e(a1+b2)v

+(ν21 + ν22)ea2v + α1(ν21e
λ01γ2 + ν22e

λ01γ1)e(a2+b1)v + α2(ν21e
λ02γ2 + ν22e

λ02γ1)e(a2+b2)v

+(ν31 + ν32)eb1v + α1(ν31e
λ01γ2 + ν32e

λ01γ1)e2b1v + α2(ν31e
λ02γ2 + ν32e

λ02γ1)e(b1+b2)v

+(ν41 + ν42)eb2 + α1(ν41e
λ01γ2 + ν42e

λ01γ1)e(b1+b2)v + α2(ν41e
λ02γ2

+ν42e
λ02γ1)e2b2v = 0,

then ν := (ν11, ν12, ν21, ν22, ν31, ν32, ν41, ν42)′ = 0. The proof of this point, which is
long and cumbersome, is detailed in our online Appendix (Davezies et al., 2020).

A.6 Proposition 2.7

Let us suppose that Assumption 5 fails. Without loss of generality, assume that
X1 = X2 almost surely. Let us define y1 := (1, 0, ..., 0), y2 := (0, 1, 0, ..., 0) and
f(x; β) := E [m(Y,X; β, λ0)|X = x]. By definition,

f(X; β) =
∑

y∈{0,1}T
P(Y = y|X)m(y,X; β). (A.15)

Moreover, almost surely,

P(Y = y1|X)

=
∫
F (X ′1β0 + γ)(1− F (X ′2β0 + γ))(1− F (X ′3β0 + γ)) · · · (1− F (X ′Tβ0 + γ))dFγ|X(γ)

=
∫
F (X ′2β0 + γ)(1− F (X ′1β0 + γ))(1− F (X ′3β0 + γ)) · · · (1− F (X ′Tβ0 + γ))dFγ|X(γ)

=P(Y = y2|X). (A.16)

Next,

m(y1, X; β) = det


exp (λ01X

′
2β) . . . exp (λ01X

′
Tβ)

... ...
exp (λ0T−1X

′
2β) . . . exp (λ0T−1X

′
Tβ)



= det


exp (λ01X

′
1β) . . . exp (λ01X

′
Tβ)

... ...
exp (λ0T−1X

′
1β) . . . exp (λ0T−1X

′
Tβ)


= −m(y2, X; β). (A.17)
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Moreover, for all y such that ∑t yt = 1 and y 6∈ {y1, y2}, m(y,X; β0) = 0 because
the cofactor includes two identical columns (since X1 = X2). Finally, if ∑t yt 6= 1,
we also have m(y,X; β0) = 0. In view of (A.15), these last points, combined with
(A.16)-(A.17), imply f(β) = 0. Since β was arbitrary, it means that (2.3) does not
identify β0. The result follows.

A.7 Theorem 3.1

Let us first summarize the proof. We link the current model with a “complete” model
where γ is also observed. This model is fully parametric and thus can be analyzed
easily. Specifically, we show in a first step that this complete model is differentiable
in quadratic mean (see, e.g. van der Vaart, 2000, pp.64-65 for a definition) and has a
nonsingular information matrix. In a second step, we establish an abstract expression
for the semiparametric efficiency bound. This expression involves in particular the
kernel K of the conditional expectation operator g 7→ E[g(X, Y )|X, γ]. In a third
step, we show that

K = {(x, y) 7→ q(x)m(x, y; β0),E[q2(X)] <∞}. (A.18)

The fourth step of the proof concludes.

First step: the complete model is differentiable in quadratic mean and has
a nonsingular information matrix. Let p(y|x, g; β) = P(Y = y|X = x, γ = g; β).
We check that the conditions of Lemma 7.6 in van der Vaart (2000) hold. Under,
Assumptions 1-2, we have

p(y|x, g; β) =
∏
t:yt=1

F (x′itβ + g)
∏
t:yt=0

(1− F (x′itβ + g)),

where F is C∞ on R and takes values in (0, 1). This implies that β 7→ ln p(y|x, g; β) is
differentiable. Let Sβ = ∂ ln p(Y |X, γ; β)/∂β and let Sβk denote its k-th component.
We prove that E[S2

βk] <∞. First, remark that

Sβk =
T∑
t=1

Xk,tf(X ′tβ + γ)
[F (X ′tβ + γ)][1− F (X ′tβ + γ)] [Yt − F (X ′tβ + γ)] .
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Next, we have

|Sβk| ≤
T∑
t=1
|Xk,t|

f(X ′tβ + γ)
F (X ′tβ + γ)(1− F (X ′tβ + γ))

=
T∑
t=1
|Xk,t|

∑T−1
j=1 wjλ0je

λ0j(X′tβ+γ)∑T−1
j=1 wje

λ0j(X′tβ+γ)

≤ λ0τ

T∑
t=1
|Xk,t|, (A.19)

where we have used the triangle inequality and |Yt − F (X ′tβ + γ)| ≤ 1 to obtain the
first inequality. Equation (A.19) and Assumption 1.2 imply that E[S2

βk] < ∞. By
the dominated convergence theorem and again (A.19), β 7→ E[SβS ′β] is continuous.
Therefore, the conditions in Lemma 7.6 in van der Vaart (2000) hold, and the complete
model is differentiable in quadratic mean. Moreover,

E[SβS ′β] = E[V(Sβ|X, γ)] =
T∑
t=1

E

( f(X ′tβ + γ)
[F (X ′tβ + γ)][1− F (X ′tβ + γ)]

)2

XtX
′
t

 .
Then, if for some λ ∈ RK , λ′E[SβS ′β]λ = 0, we would have X ′tλ = 0 almost surely for
all t ∈ {1, . . . , T}. By Assumption 3.1, this implies λ = 0. Hence, the information
matrix E[SβS ′β] is nonsingular.

Second step: V ? depends on the orthogonal projection of E[Sβ0|X, Y ] on
K. Let ψ̃ = (ψ̃1, . . . , ψ̃K)′ denote the efficient influence function, as defined p.363
of van der Vaart (2000). Then V ? = E[ψ̃ψ̃′] and E[ψ̃] = 0. Let S =span(Sβ0),
G = {q : E[q2(X, γ)] < ∞,E[q(X, γ)] = 0} and for any closed convex set A and
any h = (h1, . . . , hK)′, let ΠA denote the orthogonal projection on A and ΠA(h) =
(ΠA(h1), . . . ,ΠA(hK))′. By Equation (25.29), Lemma 25.34 (since the complete model
is differentiable in quadratic mean by the first step) and the same reasoning as in
Example 25.36 of van der Vaart (2000), ψ̃ is the function of (X, Y ) of minimal L2-
norm satisfying

χ̃ = ΠS +G (ψ̃), (A.20)

where χ̃ is the efficient influence function of the large model. Because this large model
is parametric, we have

χ̃ = E[Sβ0S
′
β0 ]−1Sβ0 . (A.21)
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Equation (A.20) implies E[(ψ̃ − χ̃)χ̃′] = 0. Thus, defining `β0 = E[Sβ0|Y,X], we get

E[ψ̃`′β0 ] = E[ψ̃S ′β0 ] = Id, (A.22)

Moreover, because E[Sβ0|X, γ] = 0, S and G are orthogonal. Thus, (A.20) is equiv-
alent to ΠS (χ̃) = ΠS (ψ̃) and ΠG (χ̃) = ΠG (ψ̃). Moreover, (A.21) implies that
ΠG (χ̃) = 0. Hence, ψ̃ ∈ KK . Now, because ΠK is an orthogonal projector, we
have

E[ψ̃ΠK(`β0)′] = E[ΠK(ψ̃)`′β0 ] = E[ψ̃`′β0 ] = Id,

where the last equality follows by (A.22). Hence, if ΠK(`β0)′λ = 0 a.s., we would have
λ = 0. In other words, E[ΠK(`β0)ΠK(`β0)′] is nonsingular. Now, consider the set,

F =
{
E[ΠK(`β0)ΠK(`β0)′]−1ΠK(`β0) + v : E[vΠK(`β0)′] = 0

}
.

F is thus the set of vector-valued functions ψ satisfying the equation E[ψΠK(`β0)] =Id.
Hence, ψ̃ being the element of F with minimum L2-norm, we obtain

ψ̃ = E[ΠK(`β0)ΠK(`β0)′]−1ΠK(`β0).

Finally, because V ? = E[ψ̃ψ̃′],

V ? = E[ΠK(`β0)ΠK(`β0)′]−1. (A.23)

Third step: (A.18) holds. Let r ∈ K and let us prove that r(y, x) = q(x)m(y, x; β0)
for some q. First, by definition of K, we have, for almost all (g, x) ∈ Supp(γ,X),

0 =r((0, 0, 0), x0) + r((1, 0, 0), x0)G(x′1β0 + g) + r((0, 1, 0), x0)G(x′2β0 + g)

+r((0, 0, 1), x0)G(x′3β0 + g) + r((1, 1, 0), x0)G(x′1β0 + g)G(x′2β0 + g)

+r((1, 0, 1), x0)G(x′1β0 + g)G(x′3β0 + g) + r((0, 1, 1), x0)G(x′2β0 + g)G(x′3β0 + g)

+r((1, 1, 1), x0)G(x′1β0 + g)G(x′2β0 + g)G(x′3β0 + g).
(A.24)

Let at := x′tβ0 for t ∈ {1, 2, 3} and, for the sake of conciseness, let us remove the
dependence of r on x. Then, using Assumption 2, we obtain, for almost all (g, x),

0 =A1e
0×g + A2e

g + A3e
λ02g + A4e

2g + A5e
2λ02g + A6e

(1+λ02)g + A7e
3g + A8e

(2+λ02)g

+ A9e
(1+2λ2)g + A10e

3λ02g,
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where

A1 =r(0, 0, 0),

A2 =w1 [r(1, 0, 0)ea1 + r(0, 1, 0)ea2 + r(0, 0, 1)ea3 ] ,

A3 =w2
[
r(1, 0, 0)eλ02a1 + r(0, 1, 0)eλ02a2 + r(0, 0, 1)eλ02a3

]
,

A4 =w2
1

[
r(1, 1, 0)e(a1+a2) + r(1, 0, 1)e(a1+a3) + r(0, 1, 1)e(a2+a3)

]
,

A5 =w1w2
[
r(1, 1, 0)(ea1+λ02a2 + ea2+λ02a1) + r(1, 0, 1)(ea1+λ02a3 + ea3+λ02a1)

+r(0, 1, 1)(ea2+λ02a3 + ea3+λ02a2)
]
,

A6 =w2
2

[
r(1, 1, 0)eλ02(a1+a2) + r(1, 0, 1)eλ02(a1+a3) + r(0, 1, 1)eλ02(a2+a3)

]
,

A7 =w3
1r(1, 1, 1)ea1+a2+a3 ,

A8 =w2
1w2r(1, 1, 1)

[
ea1+a2+λ02a3 + ea1+λ02a2+a3 + eλ02a1+a2+a3

]
,

A9 =w1w
2
2r(1, 1, 1)

[
ea1+λ02(a2+a3) + ea2+λ02(a1+a3) + ea3+λ02(a1+a2)

]
,

A10 =w3
2r(1, 1, 1)eλ02(a1+a2+a3).

Since λ02 = 2 is excluded by assumption, there are three cases left depending on the
number of different exponents in Equation (A.24).

First, we consider λ02 /∈ {3/2, 3}. By Lemma B.1 and because |Supp(γ|X)| ≥ 10, we
obtain Ak = 0 for all k ∈ {1, . . . , 10}. A1 = A7 = 0 imply that r(0, 0, 0) = r(1, 1, 1) =
0. Next, A4 = A6 = 0 implies that either r(1, 0, 1) = r(1, 1, 0) = r(0, 1, 1) = 0 or

r(1, 1, 0) = −r(1, 0, 1)eλ02(a3−a2) − r(0, 1, 1)eλ02(a3−a1),

r(1, 1, 0) = −r(1, 0, 1)e(a3−a2) − r(0, 1, 1)e(a3−a1).
(A.25)

Consider the second case. A5 = 0 implies, since (r(1, 0, 1), r(1, 1, 0), r(0, 1, 1)) 6=
(0, 0, 0),

r(1, 1, 0) = −r(1, 0, 1)e
a1+λ02a3 + ea3+λ02a1

ea1+λ02a2 + ea2+λ02a1
− r(0, 1, 1)e

a2+λ02a3 + ea3+λ02a2

ea1+λ02a2 + ea2+λ02a1
.

By assumption, for almost every x = (x1, x2, x3), a3 6= a2 and a3 6= a1. Then, using
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the latter display with equation (A.25) yields, since λ02 6= 1,

r(1, 0, 1) = r(0, 1, 1)
[
eλ02(a3−a2) − ea3−a2

]−1 [
ea3−a1 − eλ02(a3−a1)

]
,

r(1, 0, 1) = r(0, 1, 1)
[
eλ02(a3−a2) − ea1+λ02a3 + ea3+λ02a1

ea1+λ02a2 + ea2+λ02a1

]−1

×
[
ea2+λ02a3 + ea3+λ02a2

ea1+λ02a2 + ea2+λ02a1
− eλ02(a3−a1)

]
.

Since (r(1, 1, 0), r(1, 0, 1), r(0, 1, 1)) 6= (0, 0, 0), these equalities and (A.25) imply that
r(1, 0, 1) 6= 0 and r(0, 1, 1) 6= 0. Then

e(1−λ02)a2

e(1−λ02)a1

ea3+λ02a2+(λ02−1)a1 − eλ02(a2+a3)

eλ02(a1+a2) − e(λ02−1)a2+λ02a1+a3
= ea3+λ02a2+(λ02−1)a1 − eλ02(a2+a3)

eλ02(a1+a2) − e(λ02−1)a2+λ02a1+a3
,

which is equivalent to a1 = a2. By assumption, the set of x for which this occurs is
of probability zero. In other words, for almost every x,

r((1, 1, 0), x) = r((1, 0, 1), x) = r((0, 1, 1), x) = 0.

A2 = A3 = 0 implies that either r(1, 0, 0) = r(0, 1, 0) = r(0, 0, 1) = 0 or r(0, 0, 1) = −e(a1−a3)r(1, 0, 0)− e(a2−a3)r(0, 1, 0),
r(0, 0, 1) = −eλ02(a1−a3)r(1, 0, 0)− eλ02(a2−a3)r(0, 1, 0).

In the first case, almost surely r(Y,X) = 0 = 0 × m(Y,X; β0). In the second case,
r(Y,X) = q(X)×m(Y,X; β0) for some g ∈ L2

X . The result follows.

Now, we turn to λ02 = 3/2. Then, for almost all (g, x) ∈ Supp(γ,X),

0 =A1e
0×g + A2e

g + A3e
3
2g + A4e

2g + (A5 + A7)e3g + A6e
5
2g + A8e

7
2g + A9e

4g + A10e
9
2g.

By Lemma B.1 and because |Supp(γ|X)| ≥ 9, we obtain A5 + A7 = 0 and Ak = 0
for all k 6∈ {5, 7}. A1 = A10 = 0 implies that r(0, 0, 0) = r(1, 1, 1) = 0 which in turn
implies that A7 = 0 and thus A5 = 0. Hence, we have Ak = 0 for all k ∈ {1, . . . , 10}
and the same reasoning as when λ02 6∈ {3/2, 3} allows us to obtain the result.

Finally, we consider λ02 = 3. Then, for all (g, x),

0 = A1e
0×g + A2e

g + (A3 + A7)e3g + A4e
2g + A5e

6g + A6e
4g + A7e

5g + A8e
7g + A9e

9g,

By Lemma B.1 and because |Supp(γ|X)| ≥ 9, we obtain A3 + A7 = 0 and Ak = 0
for all k 6∈ {3, 7}. A1 = A10 = 0 implies that r(0, 0, 0) = r(1, 1, 1) = 0 which in turn
implies that A7 = 0 and thus A3 = 0. Hence, Ak = 0 for all k ∈ {1, . . . , 10} and the
result follows again as when λ02 6∈ {3/2, 3}.
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Fourth step: conclusion. By Steps 2 and 3, there exists q0(X) such that ΠK(`β0) =
q0(X)m(Y,X; β0). Moreover, by definition of the orthogonal projection, ΠK(`β0) −
`β0 ∈ (K⊥)K . Hence, again by Step 3, we have, for all q ∈ L2

X ,

E[q0(X)q(X)m(Y,X; β0)2] = E[`β0q(X)m(Y,X; β0)].

This implies that
q0(X)Ω(X) = E[`β0m(Y,X; β0)|X].

As a result, because `β0 = E[Sβ0|Y,X],

ΠK(`β0) =Ω−1(X)m(Y,X; β0)E[`β0m(Y,X; β0)|X]

=Ω−1(X)m(Y,X; β0)E[Sβ0m(Y,X; β0)|X].

Then, using (A.23), we obtain

V ? = E
[
Ω−1(X)E[Sβ0m(Y,X; β0)|X]E[Sβ0m(Y,X; β0)|X]′

]−1
.

Now, by the end of the proof of Theorem 2.3, we have, for all β,

0 = Eβ [m(Y,X; β)|X, γ] .

As a result,

0 = ∇βEβ [m(Y,X; β)|X, γ]

= Eβ [∇βm(Y,X; β)|X, γ] + Eβ [m(Y,X; β)Sβ|X, γ] .

Evaluating this equality at β0 and integrating over γ yields:

E[Sβ0m(Y,X; β0)|X] = −E[∇βm(Y,X; β0)|X] = −R(X).

We conclude that
V ? = E

[
Ω−1(X)R(X)R(X)′

]−1
= V0,

which is a well-defined matrix by Assumption 6.1.

29



B Technical lemmas

The following two lemmas are keys in the proof of Proposition 2.5.

Lemma B.1 Let n ≥ 1, (α1, . . . , αn) be n distinct real numbers, (a1, . . . , an) ∈ Rn

and P (x) = ∑n
i=1 ai exp(αix). If P has n distinct roots, then a1 = . . . = an = 0.

Lemma B.2 For any (t, `) ∈ {1, . . . , T}×{1, . . . , τ}, at,`,x is real analytic for almost
all Supp(X).

B.1 Proof of Lemma B.1

This follows by induction on n and Rolle’s theorem, see e.g. Chapter 2, section 2 of
Krein and Nudelman (1977).

B.2 Proof of Lemma B.2

We want to prove that each function at,`,x is real analytic for almost all x ∈ Supp(X).
Fix x ∈ Supp(X), and let w̃γj := wjδj(x, θ0, t) exp(λ0jγ), λ̃0j := λ0jβ0k. Let us define
f : (v, γ) 7→ 1/

(
1 +∑τ

j=1 w̃
γ
j exp(λ̃0jv)

)
. We have

at,`,x(v) =
∫ exp(λ0`γ)
C(γ, x; θ0, t)

f(v, γ)dFγ|X=x(γ), ∀v ∈ R.

We prove the result in three steps. First, we establish a bound on the derivatives of
f . Second, we show that at,`,x is C∞, and we bound its deratives. Finally, we show
that at,`,x is real analytic.

First step: for all k ≥ 0 and all (v, γ),∣∣∣∣∣ ∂k∂vk f(v, γ)
∣∣∣∣∣ ≤ k!(eλ0τ |β0k|)kf(v, γ). (B.1)

For any infinitely differentiable real function g : R × Supp(γ|X = x) → R, we
let g(k)(v, γ) = ∂kg(v, γ)/∂vk and define P : (v, γ) 7→ ∑τ

j=1 w̃
γ
j λ̃0j exp(λ̃0jv). First,
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remark that for any positive integer k,

∣∣∣P (k)(v, γ)
∣∣∣ =

∣∣∣∣∣∣
τ∑
j=1

w̃γj λ̃
k+1
0j exp(λ̃0jv)

∣∣∣∣∣∣
≤|λ̃k+1

0τ |

∣∣∣∣∣∣
τ∑
j=1

w̃γj exp(λ̃0jv)

∣∣∣∣∣∣
≤|λ̃k+1

0τ |/f(v, γ). (B.2)

Now, we prove (B.1) by induction. The result is trivial for k = 0. Suppose that it
holds for j = 0, . . . , k, k ≥ 0. Remark that f (1) = f × (fP ). Then, by applying twice
the general Leibniz rule, we obtain

∣∣∣f (k+1)
∣∣∣ =

∣∣∣∣∣∣
k∑
j=0

(
k

j

)
(f)(j) (fP )(k−j)

∣∣∣∣∣∣
≤

k∑
j=0

(
k

j

)
|f (j)||(fP )(k−j)|

≤ f
k∑
j=0

(
k

j

)
j!(eλ̃0τ )j

∣∣∣∣∣∣
k−j∑
i=0

(
k − j
i

)
f (i)P (k−j−i)

∣∣∣∣∣∣
≤ f

k∑
j=0

(k
j

)
j!(eλ̃0τ )j

k−j∑
i=0

(
k − j
i

)
i!(eλ̃0τ )ifλ̃k−j−i+1

0τ
1
f


≤ fλ̃k+1

0τ ek
k∑
j=0

(
k

j

)
j!
k−j∑
i=0

(
k − j
i

)
i!
 ,

where we used the induction hypothesis to get the second and third inequalities. The
last inequality follows from ei ≤ ek−j,∀i ≤ k − j. Now, notice that for any k ∈ N∗,
we have

k∑
s=0

(
k

s

)
s! =

k∑
s=0

k!
(k − s)! ≤ k!e. (B.3)

As a result,
∣∣∣f (k+1)

∣∣∣ ≤ fλ̃k+1
0τ ek

k∑
j=0

(
k

j

)
j!(k − j)!e

= fλ̃k+1
0τ ek × e× (k + 1)× k!

= (k + 1)!
(
eλ̃0τ

)k+1
f,

and thus the induction hypothesis holds for k + 1. This ends the first step.
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Second step: at,`,x is C∞ and for all k ≥ 0,

sup
v∈R

∣∣∣∣∣∂kat,`,x(v)
∂vk

∣∣∣∣∣ ≤ Ct,`,x,θ0k!(eλ0τ |β0k|)k, (B.4)

for some Ct,`,x,θ0 > 0.

First, for all v ∈ R, we have 1/f(v) ≥ w̃γ` exp(λ̃0`v) and C(γ, x; θ0, t) ≥ 1. Thus,

exp(λ0`γ)
C(γ, x; θ0, t)

f(v, γ) ≤ 1
w`δ`(x, θ0, t)

. (B.5)

Hence, (B.4) holds for k = 0, with Ct,`,x,θ0 = 1/[w`δ`(x, θ0, t)]. Next, v 7→ exp(λ0`γ)
×f(v, γ)/C(γ, x; θ0, t) is C∞ and by (B.5) and the previous step, we have, for any
k ≥ 0, ∣∣∣∣∣ ∂k∂vk

(
exp(λ0`γ)
C(γ, x; θ0, t)

f(v, γ)
)∣∣∣∣∣ ≤k!(eλ0τ |β0k|)k

exp(λ0`γ)
C(γ, x; θ0, t)

f(v, γ)

≤k!(eλ0τ |β0k|)k
wjδj(x, θ0, t)

.

Thus, by the dominated convergence theorem, at,`,x is Ck and we have∣∣∣∣∣∂kat,`,x(v)
∂vk

∣∣∣∣∣ ≤
∫ ∣∣∣∣∣ ∂k∂vk

(
exp(λ0`γ)
C(γ, x; θ0, t)

f(v, γ)
)∣∣∣∣∣ dFγ|X=x(γ)

≤ k!(eλ0τ |β0k|)k
∫ exp(λ0`γ)
C(γ, x; θ0, t)

f(v, γ)dFγ|X=x(γ)

= k!(eλ0τ |β0k|)kat,`,x(v)

≤ Ct,`,x,θ0k!(eλ0τ |β0k|)k.

Third step: at,`,x is real analytic. It suffices to show that there exists R > 0 such
that for all v, at,`,x coincides with its Taylor expansion at v on (v − R, v + R). Let
R < 1/(2eλ0τ |β0k|). First, by the second step, we have, for any v′ ∈ (v −R, v +R),∣∣∣∣∣ 1

k! (v′ − v)k ∂
kat,`,x(v)
∂vk

∣∣∣∣∣ ≤ 1
k!R

k sup
v

∣∣∣∣∣∂kat,`,x(v)
∂vl

∣∣∣∣∣
≤ Ct,`,x,θ0(Reλ0τ |β0k|)k, (B.6)

and the corresponding series converges since Reλ0τ |β0k| < 1. Thus, the Taylor series
of at,`,x converges at v, for any v′ ∈ (v −R, v +R). Finally, by the second step again
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and Taylor’s theorem applied to at,`,x(v′), we obtain, for any K > 0 and uniformly
for |v − v′| < R:∣∣∣∣∣at,`,x(v′)−

K∑
k=0

1
k! (v′ − v)k ∂

kat,`,x(v)
∂vk

∣∣∣∣∣ ≤ RK+1

(K + 1)! sup
|v′−v|<R

∣∣∣∣∣∂K+1at,`,x(v′)
∂vK+1

∣∣∣∣∣
≤Ct,`,x,θ0(Reλ0τ |β0k|)K+1

→ 0.

This completes the proof.
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