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Abstract

I propose an equilibrium solution concept in which players sequentially

sample to resolve strategic uncertainty over their opponents’ distribution

of actions. Bayesian players sample from their opponents’ distribution of

actions at a cost and make optimal choices given their posterior beliefs.

The solution concept makes predictions on the joint distribution of players’

choices, beliefs, and decision times, and generates stochastic choice through

the randomness inherent to sampling, without relying on indifference or

choice mistakes. It rationalizes well-known deviations from Nash equilib-

rium such as the own-payoff effect and I show its novel predictions relating

choices, beliefs, and decision times are supported by existing data.
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In strategic settings, individuals’ payoffs to alternative actions depend on others’ game-

play, the probabilities with which others take their respective actions. Strategic uncertainty

— uncertainty concerning others’ gameplay — is therefore a crucial element of such set-

tings, as others’ gameplay is often not known in advance. In order to make a choice,

individuals form beliefs about others’ gameplay, be it by a process of internal delibera-

tion or by acquiring new evidence. Moreover, the effort individuals exert to resolve their

strategic uncertainty is likely to respond to incentives in the environment, rendering belief

formation endogenous to the strategic setting. However, most solution concepts preclude

strategic uncertainty. Although this is a useful simplification, in reality, individuals are

typically unsure about others’ gameplay when choosing their own actions.

Strategic uncertainty along with endogenous belief formation can also help explain sev-

eral otherwise puzzling patterns in individuals’ beliefs documented by experimental ev-

idence. First, experimental evidence shows that beliefs are typically biased, diverging

both from Nash equilibrium as well as from others’ actual behavior (e.g. Costa-Gomes and

Weizsäcker 2008). Second, individuals report different beliefs when faced with the same

strategic setting, suggesting randomness in belief formation (Friedman and Ward 2019).

Finally, individuals’ beliefs depend on their own incentives, even when holding others’ be-

havior fixed (Esteban-Casanelles and Gonçalves 2020). In turn, these patterns in beliefs

may bridge the gap between the fact that individuals do tend to best-respond to their

beliefs and the abundance of evidence regarding gameplay deviations from Nash equilib-

rium. Therefore, to better model gameplay, a logical next step is to explicitly account for

belief formation.

In this paper, I develop an equilibrium framework based on sequential sampling in which

players form beliefs about their opponents’ gameplay through a costly evidence accumu-

lation process. Individuals have a belief about others’ gameplay and, prior to making a

choice, they can refine their belief by exerting costly effort to gather and process evidence,

which I model as sampling from their opponents’ distribution of actions. This can be inter-

preted as parsing historical data on past play or as an internal deliberation procedure in

which, in line with recent neuroscience research (e.g. Shadlen and Shohamy 2016), indi-

viduals sample from their own past experiences. As a trade-off emerges between acquiring

additional information to potentially make better choices, and the costs that obtaining such
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information entails, players have to decide when to optimally stop sampling and make a

choice. Optimal sequential sampling induces randomness in a player’s choices, as choices

depend on beliefs held upon stopping, which are informed by the observed samples, and

the realized samples, in turn, depend on others’ distribution of actions. I then define a

sequential sampling equilibrium as a consistent distribution of actions of all players, clos-

ing the model with a fixed-point condition. Furthermore, I show that sequential sampling

equilibria have a steady-state foundation in which short-lived players sample from past

evidence, sidestepping the apparent circularity of the solution concept.

The solution concept builds on an individual decision-making foundation of sequential

sampling in a rich environment of choice under uncertainty. In my model, players ef-

fectively act as decision makers as they take others’ uncertain behavior as given. Since

players can sample at a cost from their opponents’ choice distribution, they face an op-

timal stopping problem, having to decide when to stop sampling. Although sequential

evidence accumulation has fared well in explaining behavior in non-strategic settings by

relating belief formation and choices,1 it has not been explored in the context of equilib-

rium solution concepts. As discussed below, in laying the ground for the analysis of my

solution concept, I also contribute to the literature on optimal stopping by providing novel

comparative statics results.

I provide a general existence result for sequential sampling equilibrium. A sufficient but

not necessary condition is that players’ Bayesian updating is consistent for any unknown

distribution of actions of their opponents. For specific cases, such as when players have

degenerate priors, no sampling occurs and existence follows immediately. Moreover, if

such priors are correct, corresponding to others’ gameplay, the set of sequential sampling

equilibria matches the set of Nash equilibria of the game. When priors are non-degenerate,

players may want to acquire samples in order to learn their opponents’ distribution. Al-

though in such cases players always believe they will stop sampling in finite time, they

may actually never stop sampling and thus never take an action, preventing the existence

of an equilibrium. I establish that whenever players’ priors have full support, a sequential

1Pioneered in cognitive science (Ratcliff 1978; Forstmann et al. 2016), this approach linking choice and
a specific process of belief formation has been used to explain individual decisions in many contexts of
economic interest, from simple purchasing decisions (Krajbich et al. 2012) to response to advertising (Chiong
et al. 2019). Further, it has led to new theoretical models that rationalize known patterns of how choices
relate to decision times (e.g. Fudenberg et al. 2018). See Clithero (2018) for a review.
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sampling equilibrium exists. The proof builds on a novel technical result relating Bayesian

consistency and optimal stopping. I show that with a full support prior — a necessary and

sufficient condition for Bayesian updating to be consistent for any true distribution of the

samples — optimal stopping time is bounded which, in particular, precludes players from

sampling forever.

As stated earlier, sequential sampling equilibrium can be thought of as a steady state of

a simple dynamic process. I consider a sequence of populations of short-lived players who

sample from data on past play according to the sequential sampling procedure that under-

lies my solution concept. I prove that if the distribution of data on actions converges as the

data accumulates, the limit distribution is a sequential sampling equilibrium. Moreover, I

show this distribution always converges in 2×2 games with a unique Nash equilibrium.2

Sequential sampling also provides a novel foundation for Nash equilibrium, based on

costly information acquisition. I establish that, as sampling costs vanish, sequential sam-

pling equilibria converge to Nash equilibria. This follows from showing that optimal stop-

ping implies that players asymptotically have no regret when priors have full support. It

is important to point out that convergence to a Nash equilibrium requires optimal and

sequentially rational sampling behavior. In contrast, this result no longer holds when in-

formation acquisition is myopic, that is, when players keep sampling only if the next obser-

vation improves the expected payoff net of the sampling cost, neglecting the continuation

value of further samples.

Not all Nash equilibria can be reached as sampling costs vanish. In particular, a Nash

equilibrium involving weakly dominated actions cannot be reached as sequential sampling

players holding non-degenerate beliefs would never choose these actions. In fact, I find

that this is both necessary and sufficient for pure-strategy equilibria: a pure-strategy Nash

equilibrium can be reached with some full support priors if and only if it does not involve

weakly dominated actions. Further, I provide a sufficient condition for a more robust

selection result, whereby a pure-strategy Nash equilibrium is a limit point any full support

priors. This condition is more permissive than strict Nash equilibria, for which it is intuitive

that this robust selection holds.

2As is well-known (e.g. Shapley 1964), under fictitious play — whereby players best-respond to the em-
pirical distribution of past play — this empirical distribution of play can cycle and fail to converge to Nash
equilibrium when players have three or more actions.
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Away from the zero cost limit, sequential sampling equilibrium rationalizes deviations

from Nash equilibrium. A pervasive pattern of choice distributions that emerges in 2×2

games in experimental settings is that increasing the payoffs associated with a player’s

action leads that player to choose that action more often. This has been termed the “own-

payoff effect” and has been widely documented in contexts where the Nash equilibrium

predictions go against it, as in the case of generalized matching pennies games (e.g. Goeree

and Holt 2001). I prove that sequential sampling equilibrium not only predicts the own-

payoff effect but, in contrast to existing models, also matches specific patterns in the data

regarding how the joint distribution of choices and decision time changes with payoffs.

In particular, when increasing a player’s payoffs to a given action, my model also predicts

an “opponent-payoff time effect”, with the opponent choosing the best response to such

an action more often and faster. This provides a novel prediction regarding how choices

relate to stopping times in this class of games, which is borne out by existing experimental

evidence.

These results follow from two monotone comparative statics for the underlying individual

choice process that may be of independent interest. First, I establish that increasing the

payoffs to a given action increases the probability not only that it is chosen but also that

it is chosen earlier, a result that generalizes beyond two-action settings. That is, even

though increasing payoffs could lead to a greater value to sampling further and potentially

discovering that such an action is suboptimal, the individual requires less information to

be convinced to take such an action. Second, I show that the probability that an action

is chosen and the time it takes to choose it is also monotone in the true probability that

the action is optimal, which, in a strategic setting, is given by the opponent’s gameplay.

Moreover, in both cases, the opposite is true for the other action.

Sequential sampling equilibrium can also account for the experimental findings men-

tioned earlier regarding reported beliefs: randomness, payoff-dependence of the players’

beliefs, and bias. Players’ equilibrium beliefs, that is, the beliefs held at the time when

they make their choices, depend on the sample path of signals they have observed. This

implies that players’ equilibrium beliefs are random. Moreover, as payoffs influence the

benefits and extent of information acquisition, then not only individuals’ choices but also

their beliefs and stopping time are going to depend on their payoffs. This implies that, in
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arbitrary games, equilibrium beliefs may be biased on average. I explore this feature in

2×2 games and uncover a systematic relation between beliefs and payoffs. I prove that

the probability assigned by a player’s equilibrium beliefs to their opponent choosing a par-

ticular action is increasing in the opponent’s payoffs to this action, a prediction supported

by experimental data.

Finally, I discuss how to extend sequential sampling equilibrium to games of incomplete

information and more general information structures. It is straightforward to adjust my

solution concept to Bayesian games by having samples include information on the realized

actions as well as the state. An analogous result to that of convergence to Nash equilibrium

is then obtained: limit points of Bayesian sequential sampling equilibria as sampling costs

vanish are Bayesian Nash equilibria. Furthermore, I consider the case where players cannot

perfectly distinguish between states in their samples. In this case, I prove that limit points

of a sequence of equilibria with vanishing costs are analogy-based expectations equilibria

(Jehiel 2005; Jehiel and Koessler 2008).

To summarize, sequential sampling equilibrium constitutes a flexible equilibrium frame-

work for analyzing strategic interaction. As my results show, it provides a rationale for

standard solution concepts, accounts for several behavioral patterns that have been docu-

mented in experiments, and makes novel predictions not just on choices that individuals

make in strategic settings but also on timed stochastic choice data, the joint distribution of

choices, beliefs and decision times.

Related Literature

This paper contributes to three different literatures: belief formation in games, costly in-

formation acquisition and cognitive limitations, and, more broadly, sequential sampling.

Within the literature focusing on belief formation in games, the papers closest to mine

use sampling as a mechanism to account for players’ choices. Osborne and Rubinstein

(2003) focus on the case where each player observes a fixed number of samples from their

opponents’ equilibrium distribution of actions with the mapping from samples to actions

being exogenously specified. Salant and Cherry (2020) study a special case of this solution

concept in mean-field games with binary actions, while keeping the sampling procedure

exogeneous. In particular, this paper explicitly considers that players form beliefs based
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on the observed sample and best-respond to their beliefs. Osborne and Rubinstein (1998)

examine a similar notion of equilibrium, where players receive a fixed number of samples

from the payoffs of each of their actions and choose the action with the highest average

payoff in the sample. Rubinstein and Wolinsky (1994) consider the case where players

form beliefs by observing a signal about others’ gameplay.

In contrast to these papers, my solution concept endogenizes the signals players obtain by

making information acquisition the object of choice of the player. The endogeneity of the

sampling process results, for instance, in players sampling more when payoffs are scaled

up, thereby affecting equilibrium beliefs and thus gameplay, a phenomenon that cannot

be captured with exogenous sampling. One example of how this is the fact that, in a class

of dominance-solvable games, scaling up payoffs has no effect on sampling equilibrium

predictions, but sequential sampling equilibrium predicts that it leads results in to choices

consistent with more steps of iterated deletion of dominated actions.

Another reason why players may form mistaken beliefs is because they conflate behavior

of players of different types. Jehiel and Koessler (2008) examine this phenomenon by

adapting Jehiel’s (2005) analogy-based expectations equilibrium to look at equilibrium

gameplay in static Bayesian games, where players form beliefs by averaging gameplay of

different types. Eyster and Rabin (2005) look at a similar concept, cursed equilibrium,

where beliefs are formed by combining each type’s equilibrium behavior and the average

behavior of opponents of all types. As mentioned earlier, this paper provides a rationale

for analogy-based expectations equilibrium, and thus, for fully cursed equilibrium, as a

limit case of sequential sampling equilibria in static Bayesian games.

Beliefs may also be misspecified, whereby players assign zero probability to some situ-

ations. Esponda and Pouzo’s (2016) Berk-Nash equilibrium allows for general forms of

misspecification of the players’ prior beliefs and is not restricted to either normal-form

or complete information games. There, players best-respond to their equilibrium beliefs,

those in the support of players’ priors that minimize the Kullback–Leibler divergence to

equilibrium gameplay. While their framework can be seen as the limit case of Bayesian

learning from sampling with potentially misspecified priors, I focus on characterizing be-

lief formation in games where such information acquisition is costly. In contrast to sequen-

tial sampling equilibria, whenever players’ priors have full support, Berk-Nash equilibria
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coincide with Nash equilibria. Furthermore, as in Nash equilibrium, equilibrium beliefs

in Berk-Nash equilibrium will in general preclude any strategic uncertainty as equilibrium

beliefs will be degenerate except on knife-edge cases.

This paper is also related to existing models of costly information acquisition in games.

Yang (2015) studies equilibrium in a coordination game where players can acquire unre-

stricted but costly information on an exogenous payoff-relevant parameter. As in much

of the rational inattention literature (Sims 2003; Matějka and McKay 2015), the cost of

information is given by the decrease of the priors’ entropy. Denti (2018) allows for players

to obtain correlated information and for more general information cost functions (as in

Caplin and Dean 2015). While ex-ante costly information acquisition has been recently

connected to costly sequential sampling (Morris and Strack 2019), the main difference

with respect to my solution concept is that these papers examine the case where strategic

uncertainty is fully driven by the uncertainty about the exogenous parameter. As in these

models players’ beliefs are correct, whenever there is no uncertainty about this exogenous

parameter, equilibria in these papers correspond to Nash equilibria. Instead, sequential

sampling equilibrium aims to capturing strategic uncertainty and belief formation even in

complete information games.

A different approach to costly information acquisition is taken by Alaoui and Penta (2016;

2018). These authors provide an axiomatic basis for a model of choice deriving from

a cost-benefit analysis of reasoning to form beliefs about their opponents, endogenizing

types in the level-k model (Stahl and Wilson 1994; Nagel 1995). While their model allows

for non-equilibrium gameplay, one of their representation results (Alaoui and Penta 2018,

Theorem 4) corresponds to an analogue of sequential sampling equilibrium where players

follow myopic information acquisition strategies. Differently from these papers, I focus on

deriving comparative statics within an equilibrium framework where players are forward-

looking in their information acquisition. As mentioned earlier, this distinction matters

since in the forward-looking case gameplay converges to Nash equilibrium when sampling

costs vanish, whereas in the myopic case this is no longer the case.

It is natural to compare sequential sampling equilibria with fictitious play and learning in

games more generally. Following the original interpretation of equilibrium beliefs as given

by a scenario where players “accumulate empirical evidence” (Nash 1950), fictitious play
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(Brown 1951) has players myopically best-responding to observed or simulated frequency

of past play. Such an approach does not necessarily lead to gameplay converging to Nash

equilibrium as shown by Shapley (1964). However, it does provide a rationale for Nash

equilibria as it characterizes steady states of such a process (Fudenberg and Kreps 1993).

Thus, the steady-state characterization of sequential sampling equilibria provides a clear

analogue to the characterization of Nash equilibria as steady-states of fictitious play. The

crucial difference between fictitious play — or the more general learning processes consid-

ered in Fudenberg and Kreps (1993) — and the dynamic process I analyze is that whereas

data is freely observable in fictitious play, sequential sampling players face information

acquisition costs.

A myopic learning model with sampling is given by Oyama et al. (2015). The authors

show how a dynamic version of Osborne and Rubinstein’s (2003) sampling equilibrium

satisfying a condition on the distribution of samples leads to almost global asymptotic

stability of p-dominant actions — actions that are strict best-responses to having at least p

fraction of the population playing them. Their results fail to apply to the dynamic process

in this paper as not only is the sampling distribution an endogenous object, sampling is not

independent of sample sizes. In my model, as information acquisition optimally depends

on payoffs and beliefs, the sample size is not independent from the sample path, as players

will stop sampling earlier or later depending which observations realize.

A less related paper on learning in strategic settings is that by Kalai and Lehrer (1993),

who focus instead on infinitely repeated finite games played by forward-looking Bayesian

agents who maximize their discounted expected utility. The authors show that when play-

ers have subjective beliefs about their opponents’ strategies for the repeated game, then

gameplay converges to a Nash equilibrium of the repeated game. Differently, this paper

looks not at repeated games but instead at games that are played infrequently and where

learning occurs offline.

Lastly, this paper also contributes to the literature on sequential sampling. The optimal

stopping problem that players as individuals solve in this paper differ from the standard

problem in Wald (1947) and Arrow et al. (1949) in that the support of their priors is not

finite. It is also different from the problem in Fudenberg et al. (2018), as there individuals

have correct priors and can take binary actions. I contribute with novel results to this lit-
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erature: comparative statics results on how choices, stopping times, and beliefs depend on

payoffs and the true probability distributions, as well as more specific results in the special

case of Beta priors. Additionally, I provide a general condition for optimal stopping time

to be bounded regardless of the true probability distribution by proving an extension of a

result on uniform consistency of Bayesian updating by Diaconis and Freedman (1990) that

makes the problem of solving for optimal stopping computationally tractable for arbitrary

finite actions.

Outline

An outline of the remainder of the paper is as follows: Section 1 introduces the players’

information acquisition problem. In Section 2, I define sequential sampling equilibrium

and discuss existence, its interpretation and how equilibria are steady states of a dynamic

process related to fictitious play. Section 3 examines its relation to Nash equilibrium when

sampling costs vanish. Section 4 derives several implications of optimal stopping in binary

problems and uses these to obtain comparative statics results in 2×2 games. Extensions

to Bayesian games and more general information structures are the focus of Section 5.

Finally, I conclude with a discussion of specific avenues for further work in Section 6. The

proofs can be found in the Appendix.

1. Sequential Sampling

1.1. Setup

Let Γ= 〈I, A,u〉 denote a normal-form game, where I denotes a finite set of players or roles,

A := ×i∈I A i where A i is i’s finite set of feasible actions and u := (ui)i∈I where ui : A → R

is i’s payoff function. I will write −i to denote I \ {i}, σi ∈ Σi :=∆(A i), σ−i ∈ Σ−i :=∆(A−i),

where σ−i(a−i)=∏
j∈−iσ j(a j). I also extend ui to the space of probability distributions over

actions with ui(σi,σ−i)= Eσ[ui(ai,a−i)].

In contrast to standard solution concepts, each player i ∈ I is uncertain about others’

gameplay and has a belief µi ∈∆(Σ−i) about σ−i. In the case where players are restricted

to believing each of the opponents’ gameplay is independent, I instead define their beliefs

to be given by a product measure µi =× j∈−iµi j, where each µi j is a probability measure on

9



Σ j. When a prior belief µi can be written in such way as a product measure, I say it does

not allow for correlation and that it does if otherwise.

Player i’s problem is to choose σi in order to maximize their expected utility given their

beliefs, Eµi [u(σi,σ−i)], and their value function is then given by

vi(µi) := max
σi∈Σi

Eµi [ui(σi,σ−i)].

Prior to making a choice, player i can sample from the unknown probability distribution

σ−i at a cost. That is, player i can observe realizations of a stochastic process Xi =
{
X i,t

}
t∈N

defined on the probability space (Ω,F ,P) with Fi denoting the natural filtration of Xi. I will

write X t
i =

(
X i,`

)t
`=1 to stand for the sample path up to time t, where each realization X i,`

is distributed according to σ−i, P
(
ω : X i,`(ω)= a−i

) = σ−i(a−i) or, equivalently, X i,` ∼ σ−i,

with the understanding that X0
i = ;. The player’s beliefs µi ∈ ∆(Σ−i) then induce a joint

distribution on Σ−i and the realizations of the stochastic process, given by Pµi (S−i ×B) =∫
S−i

Q∞
s−i

(B)µi(ds−i) where Q∞
s−i

is the infinite product measure on the space of sample

paths given s−i ∈Σ−i, S−i ⊆Σ−i and measurable set B of sample paths.

I denote the set of all finite sample path realizations by Xi :=⋃
t∈N At

−i. Upon observing a

given sample path up to time t, X t
i , player i updates beliefs on Σ−i according to Bayes’ rule,

denoted by µi|X t
i and which I assume is well defined — which is the case whenever, for

instance, the prior puts strictly positive probability on fully mixed gameplay, µi ( int (Σ−i))>
0. I will write µi | xt

i to denote µi | X t
i = xt

i.

For the sake of simplicity, sampling costs are taken to be linearly increasing in the number

of samples with ci ∈R++ denoting the constant flow cost. General results extend to the case

where they are given by a non-negative, non-decreasing function on N that diverges to +∞
and has non-decreasing successive differences, that is, ci(t+2)− ci(t+1) ≥ ci(t+1)− ci(t),

t ∈N.

An extended game G is then a tuple comprising an underlying normal-form game Γ, a

vector c = (ci)i∈I ∈R|I|
++ where ci is i’s sampling cost, and µ= (

µi
)

i∈I where µi ∈∆(Σ−i) is i’s

prior about their opponents’ gameplay.
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1.2. Optimal Stopping

Before formally defining the solution concept, let us first consider the players’ sampling

problem in isolation.

In order to maximize their expected payoffs, each player i faces an optimal stopping

problem: based on accumulated evidence, they can decide whether to stop and make a

choice or to acquire a new sample. Player i decides on a stopping time ti in the set Ti of

all stopping times adapted with respect to Fi with values in N0 ∪ {∞}, taking into account

the sampling cost ci. Let Vi denote the resulting value function, where

Vi(µi) := sup
ti∈Ti

Eµi

[
vi

(
µi | X ti

i

)
− ci · ti

]
(SPi)

with a slight abuse of notation by letting Eµi (·) correspond to the expectation taken with

respect to Pµi . Note that Vi is bounded above by maxa∈A ui(ai,a−i), which ensures Vi is

well-defined and finite-valued.

I recast i’s optimal stopping problem as a dynamic programming problem. Let Bi be a

function mapping from the set of real-valued functions on ∆(Σ−i) to itself where

Bi(V )[µi] :=max
{
vi(µi) , Eµi

[
V (µi | X i)

]− ci
}

The following is a well-known result, given that Vi is bounded above:

Fact 1. Let V be a solution to the functional equation Bi(V ) = V . Then, V = Vi; i.e., it is a

value function satisfying (SPi).

As is standard in optimal stopping problems, I focus on the earliest optimal stopping time

τi, where

τi = inf
{
t ∈N0

∣∣ Vi(µi | X t
i )= vi(µi | X t

i )
}

(1)

whenever the right-hand side is non-empty, and +∞ when otherwise. As a consequence of

the above fact, we have:

Fact 2. The stopping time τi is a solution to the optimal stopping problem (SPi).

The proof for these facts follows standard arguments (see e.g. Ferguson 2008, ch. 3).
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Some general properties of the solution to this optimal stopping problem are given in the

next two propositions.

Proposition 1. The optimal stopping time τi is finite with probability 1 with respect to µi,

that is, Pµi (τi <∞) = 1. Moreover, for any t ∈N0 and for any true probability distribution

σ−i ∈Σ−i, both Pµi (τi ≤ t) and Pσ−i (τi ≤ t) increase with the sampling cost ci.

Proposition 1 states not only that players expect their stopping time to be finite, but also

that stopping time increases in a first-order stochastic dominance sense as the sampling

cost decreases. The first claim follows from the fact that, as expected utility is bounded

from above, if the player expects to sample for an infinite amount of time with positive

probability, they will have an infinitely negative expected utility and is therefore better-off

stopping immediately. The second is due simply to the fact that increasing the sampling

cost reduces the continuation value, leading the player to stop earlier. As we will see,

although the latter statement holds for both the distribution of players’ stopping time under

their prior and the true distribution of their samples, the former holds only with respect to

their prior and, without further assumptions, may fail to hold under the true distribution

of their samples.

To state the next results, let us introduce some further notation. For ai ∈ A i, let ≥ai

denote the partial order on utility functions ui : A → R such that u′
i ≥ai ui if, for every

a′ ∈ A, u′
i(a

′
i,a

′
−i)≥ ui(a′

i,a
′
−i), with equality for all a′

i , ai. I will write Mi(ai) to denote the

set of beliefs µi ∈∆(Σ−i) at which i stops sampling and ai ∈ A i is optimal, that is,

Mi(ai) :=
{
µi ∈∆(Σ−i)

∣∣∣ Vi(µi)= Eµi [ui(ai, s−i)]
}

,

where Mi(ai) depends on the sampling cost ci and the utility function, as these affect the

value function Vi.

Proposition 2.

(i) For any ai ∈ A i, Mi(ai) is convex and increases (decreases) with respect to set inclu-

sion in the utility function ui with respect to ≥ai (≥a′
i
, a′

i ∈ A i \{ai}).

(ii) For any ai ∈ A i, σ−i ∈ Σ−i and t ∈ N0, Pσ−i

(
τi ≤ t ∩ (µi | Xτi

i ) ∈ Mi(ai)
)

is increasing

(decreasing) in the utility function ui with respect to ≥ai (≥a′
i
, a′

i ∈ A i \{ai}).
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This result provides comparative statics that are not only of interest to the study of de-

cision time in non-strategic settings, but, importantly, it will also enable us to later on

characterize how changes in payoffs affect sequential sampling equilibrium predictions.

First, the proposition states that the set of beliefs at which decision-makers stop and take

a given action is convex and characterizes how it changes with respect to the payoffs as-

sociated with that same action and to those of other actions. Second, it shows that, for

any true distribution of the samples, the probability that a given action is optimal upon

stopping increases with that action’s payoffs and, furthermore, that the probability of tak-

ing such action earlier also increases. Note that this does not mean that the probability of

stopping earlier increases. In short, as action ai is now more attractive payoff-wise, the

decision-maker requires less evidence to be sufficiently convinced to stop sampling and

take that action. The opposite is true if, instead, a′
i , ai becomes more attractive.

The intuition for the proof is easily summarized. Convexity of this set follows from con-

vexity of the value function. To see that it increases in the set inclusion order with higher

payoffs to that action, note that the continuation payoff is only affected if the decision-

maker stops with the same action. Therefore, if it is optimal to stop at a given belief under

lower payoffs to that action, it will still be optimal to stop at those same beliefs under

higher payoffs. An opposite reasoning holds when considering the effects of increasing

payoffs to action ai on the beliefs at which it is optimal to stop and take another action

a′
i , ai: If the decision-maker did not stop and take action a′

i under beliefs µi under lower

payoffs to action ai, they will certainly not be more convinced to stop and take action a′
i

when payoffs to ai increase. These two observations together imply the second claim in

the proposition.

A corollary to Proposition 1 relates the sampling cost to changes in Mi(ai):

Corollary 1. For any ai ∈ A i, Mi(ai) increases in the set inclusion partial order in the

sampling cost ci.

The corollary allows us to observe that, while scaling up the payoffs to action ai enlarges

Mi(ai), scaling up the payoffs to all actions — which is equivalent to decreasing the sam-

pling cost — shrinks Mi(ai). This implies that, as the sampling cost decreases, the player

collects more information before stopping and taking action ai.

13



2. Equilibrium

By observing different sample paths, players may end up making different choices, that

is, their information acquisition will induce a distribution of choices. My equilibrium no-

tion imposes a consistency requirement between the distribution of the observations they

sample and the choices that their optimal sequential sampling procedures induce.

Let Xi(ui,µi, ci) denote the set of sample paths at which player i stops according to the

optimal stopping time τi when endowed with utility function ui, prior µi and sampling

cost ci, that is,

Xi(ui,µi, ci) :=
{

xt
i ∈X

∣∣∣ Vi(µi | xt
i)= vi(µi | xt

i) ∩ Vi(µi | xt−h
i )> vi(µi | xt−h

i ), ∀h = 1, ..., t
}

.

In other words, Xi(ui,µi, ci) characterizes the set of stopping sample paths.

Upon stopping, player i chooses some si ∈ argmaxσi∈Σi Eµi [ui(σi,σ−i)]. Let bi :∆(Σ−i)→Σi

denote a selection of optimal choices at a given belief νi ∈∆(Σ−i),

bi(νi) ∈ argmax
σi∈Σi

Eνi [u(σi,σ−i)] .

As X i,` ∼σ−i, let f i :σ−i 7→ f i(σ−i) denote player i’s expected gameplay induced by optimal

sequential sampling from their opponents’ true distribution of choices, given a selection

rule, that is,

f i(σ−i) := Eσ−i

[
bi

(
µi|Xτi

i

)]
(2)

= ∑
xt

i∈Xi(ui ,µi ,ci)︸           ︷︷           ︸
Sum over all

stopping sample paths

t∏
`=1

σ−i(xi,`)︸           ︷︷           ︸
Prob. reaching

stopping sample path

xt
i given σ−i

bi(µi | xt
i)︸        ︷︷        ︸

Best-response

to beliefs µi | xt
i

,

assuming player i stops in finite time almost surely. That is, the probability of player

i taking action ai, f i(σ−i)[ai], is given by the probability of taking such an action once

player i stops after having observed sample path xt
i, bi(µi | xt

i)[ai], and the probability that

such sample path is observed. The probability that this sample path is observed is given

14



by
∏t
`=1σ−i(xi,`), as each observation corresponds to an action profile xi,` ∈ A−i, sampled

independently from i’s opponents’ gameplay, σ−i ∈Σ−i.

My solution concept corresponds to a consistency condition on overall gameplay given the

players’ sequential information acquisition, whereby the distribution of a player’s samples

matches the distribution of their opponents’ actions. Formally,

Definition 1. A strategy profile σ is a sequential sampling equilibrium of the extended

game G if, ∀i ∈ I, there is a selection of optimal choices bi : ∆(Σ−i) → Σi such that σi =
Eσ−i

[
bi

(
µi|Xτi

i

)]
, where X i,` ∼σ−i, and Pσ−i (τi <∞)= 1.

Given its fixed-point definition, one can view a sequential sampling equilibrium as a

self-enforcing distribution of action data. When players sample from accumulated past

data distributed according to a sequential sampling equilibrium, under the same selection

of best-responses to their beliefs, their expected gameplay will match the distribution of

accumulated past data. As I show in a later section, this interpretation is well-grounded in

a steady-state foundation for the solution concept.

Many interpretations of the sampling process are possible. For instance, players can be

thought of as parsing existing data on past actions or asking friends, incurring a cost per

acquired data point or friend inquired. Another interpretation is that players are drawing

from their own memory past realizations or more general information that helps them

reason about how others would act in such situation,3 echoing recent developments in

the neuroscience literature on decision-making (see, e.g. Bornstein and Norman 2017;

Bakkour et al. 2018).

Additionally, sequential sampling equilibrium notion provides a way to relax other so-

lution concepts, which it nests as a special case. When players’ priors assign probability

one to a single probability distribution of their opponents associated with the same Nash

equilibrium of the underlying game, that Nash equilibrium will coincide with a sequential

3I discuss more general signal structures in Section 5.
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sampling equilibrium of the game.4 Thus, sequential sampling equilibrium relaxes in a

particular manner the implicit epistemic assumption in Nash equilibrium that, in equilib-

rium, players come to know their opponents’ gameplay. Further, players in my solution

concept need not know others’ payoff functions, as neither their information acquisition

nor the choices it entails rely on such knowledge. Hence, my model also dispenses with

the assumption of mutual knowledge of the game and of others’ rationality. Osborne and

Rubinstein’s (2003) sampling equilibrium also corresponds to a variant of my model where

players can sample at no cost the first t observations and face an arbitrarily large cost to

any further sampling.

2.1. Existence

Contrary to what one might think, existence is not immediate. For some priors and

sampling costs, a sequential sampling equilibrium need not exist in the associated ex-

tended game. If the priors are degenerate or sampling costs are so high that players

optimally choose not to sample, then sequential sampling equilibria are just the players’

best-responses to their priors. However, existence is not ensured for general priors as

players may want to sample indefinitely. The next example illustrates this fact.

Example 1.

Player 2

L M R

Player 1
U 1,0 0,1 0,0

D 0,0 0,1 1,0

Figure 1. Non-existence

4As it is implicit in this statement, even though beliefs are degenerate and coincide on the same Nash
equilibrium, not all best-responses will coincide with that same Nash equilibrium, which explains why there
may be multiple sequential sampling equilibria instead of there being a unique equilibrium coinciding with
the Nash equilibrium players believe to occur. Moreover, such non-uniqueness can occur even when the game
has a unique Nash equilibrium. This echoes Aumann and Brandenburger’s (1995) results on the epistemic
characterization of Nash equilibrium, whereby conjectures — and not choices — are found to coincide with
Nash equilibrium.
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Let Γ be a two-player normal-form game as given by Figure 1. As M is a strictly dominant

action for player 2, for any extended game G = 〈Γ,µ, c〉, any sequential sampling equilib-

rium σ must have that σ2(M)= 1. Suppose that player 1’s prior µ1 assigns equal probability

to σ′
2 = (1−3ε,2ε,ε) and to σ′′

2 = (ε,2ε,1−3ε), where the first, second and third elements of

σ2 correspond to the probability with which L, M and R are played, respectively. Then,

were player 1 to observe M, the posterior is the same as the prior, given the symmetry in

σ′
2 and σ′′

2, that is, µ1 | M = µ1. When instead L (M) is observed, the posterior then places

a larger probability on σ′
2 (σ′′

2) than σ′′
2 (σ′

2).

Then, given the symmetry in the problem, the value player 1 assigns to taking just one

additional sample — also called the expected value of sample information (Raiffa and

Schlaifer 1961, ch. 5A) — given by Eµ1

[
v1(µ1|X1)

]− v1(µ1), is strictly positive. As the

value obtained from optimal stopping is always weakly greater than the value of myopic

sampling policy, V1(µ1) ≥ Eµ1

[
v1(µ1|X1)

]
, then for any sampling cost that is low enough,

player 1 will deem it worthwhile to sample, as V1(µ1)− c1 ≥ Eµ1

[
v1(µ1|X1)

]− c1 > v1(µ1).

Given that under any equilibrium σ2(M) = 1, player 1’s posterior is always identical to

the prior for any sampling path where samples are distributed according to σ2, i.e. µ1,t =
µ1 | X t

1 = µ1 | (M, ..., M) = µ1. Consequently, player 1 will always consider it worthwhile

to continue sampling as V1(µ1,t)− c1 > v1(µ1,t) ∀t ∈ N. As player 1 will then never stop

sampling and, consequently, will never make a choice, a sequential sampling equilibrium

does not exist in that extended game. �

Example 1 shows that, even if player i’s optimal stopping time is finite with probability

one with respect to i’s own prior, it may actually be finite with probability zero under the

true distribution of the sampling process when i’s prior is misspecified. In fact, this is the

sole impediment for existence of a sequential sampling equilibrium. That is, existence is

ensured insofar as all players stop sampling in finite time almost surely for any gameplay

of their opponents.
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In order to address potential issues of non-existence, I will impose that players’ priors

have full support. Player i’s prior µi is said to have full support if it assigns positive

probability to every open neighborhood of every σ−i ∈Σ−i ⊂R|−i|−1, where Σ−i is endowed

with the Euclidean topology.

Under such condition, a strong result on the optimal stopping time ensues.

Proposition 3. Suppose that µi is has full support. Then, ∃T(ui,µi, ci) = Ti ∈N0 such that

∀σ−i ∈Σ−i, Pσ−i (τi ≤ Ti)= 1.

As in finite dimensional spaces, the Bayesian learning is consistent for any distribution if

and only if the prior has full support (Freedman 1963), Proposition 3 uncovers an im-

portant consequence of Bayesian learning for optimal stopping: Not only is the decision-

makers’ optimal stopping time finite with probability one, for any true distribution of their

samples, it is also bounded uniformly across all distributions of samples. This effectively

transforms the optimal stopping problem from infinite to finite horizon, allowing for a

solution to be obtained by backward recursion, simplifying the problem significantly.5

The intuition underlying the result is that if the prior has full support, the posterior

accumulates around the empirical mean. Then, one can guarantee a bound on the rate

at which the posterior accumulates around the empirical mean, depending on the number

of samples but not on the sample path itself (Diaconis and Freedman 1990). With this,

it is possible to bound the gains in expected payoff of sampling further regardless of the

realized sample path and show that there is a number of observations after which the cost

of an additional observation dwarfs the expected gain, regardless of realizations. Hence,

one concludes that the decision-maker necessarily stops after such number of samples and

we can find an explicit upper bound for the stopping time that depends only on the prior µi,

payoffs ui, and sampling cost ci. This stands in contrast to the canonical problem in Arrow

et al. (1949) where the prior has finite support, of which Example 1 is an illustration, and

5In Appendix C.1, I provide a refinement of this result. I show that for a specific class of priors that are
commonly used in applications, Dirichlet priors, the optimal stopping time is bounded uniformly over both
the true distribution of the samples and all priors in this family, characterizing the exact upper bound. This
suggests a tractable manner to numerically solve for optimal stopping and, thus, for sequential sampling
equilibria, which may be of use to practitioners in applying the solution concept to the data.
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optimal stopping time is not bounded.6 The argument in the proof also extends to more

general sampling costs, provided these are non-decreasing, with non-decreasing successive

differences and unbounded from above.

An immediate implication of Proposition 3 is that it ensures the induced expected game-

play given σ−i is well-defined, with f i(σ−i) ∈ Σi. As a consequence, it is a sufficient that

players have full-support priors for there to be a sequential sampling equilibrium.

Theorem 1. Let G be an extended game where players’ priors have full support. Then, a

sequential sampling equilibrium exists.

The result follows from standard arguments. Since f i is not only well-defined but also

continuous, Brouwer’s fixed-point theorem applies.

As the discussion at the start of this subsection reflects, full-support priors are sufficient

but not necessary for an equilibrium to exist. In fact, I provide sufficient conditions for non-

degenerate but misspecified priors such that the result in Proposition 3 holds and, conse-

quently, a sequential sampling equilibrium exists. An extension of Diaconis and Freedman’s

(1990) provided in the Appendix shows that Bayesian updating with a general class of mis-

specified priors leads to beliefs uniformly accumulating around the points in the support

that minimize the Kullback-Leibler divergence with respect to the empirical mean, which

contributes to the classical convergence result by Berk (1966). To ensure uniqueness of

such a minimizer and preclude situations as that illustrated in Example 1, I require the

prior’s support to be convex.

2.2. Sampling from Past Data

For any equilibrium model, an important question is how players may come to behave ac-

cording to the model’s predictions. In the case of sequential sampling equilibrium, a valid

concern is that it exhibits an inherent circularity, as players sample from their opponents’

equilibrium distribution of choices. I previously stated that sequential sampling equilibria

6Similarly, optimal stopping time is also not bounded in the continuous-time version of the canonical prob-
lem, with Gaussian noise, be it with (Moscarini and Smith 1963) or without experimentation concerns
(Chernoff 1961). In some cases with finite support prior, however, stopping time can be bounded, as in
the case with Poisson arrival of conclusive information, but not when the decision-maker can choose from
different information sources (Che and Konrad 2019).
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can be thought of as a steady state of a process where a sequence of populations of players

sampling from accumulated past data. This section formalizes that argument.

The dynamic process is as follows. Fix an extended game G. At each period, n = 1, ...,

a unit measure of agents j ∈ J plays the game, evenly divided across the different roles I

of the finite normal-form game underlying G and randomly matched. For every period n,

agents from the previous period are replaced by a new population of agents as is standard

in evolutionary models of learning in strategic settings.

Each agent in role i can sample from past accumulated data from opponents’ realized

actions, that is, each observation is sampled according to its empirical frequency in all past

periods, with σ0 ∈Σ given. Sampling is sequential and optimal with respect to the agent’s

sampling cost ci, their prior µi and utility function ui and I assume that agents cannot

observe their calendar time or that of the observations. When the player stops sampling,

they best-respond to their beliefs.7 I call this process dynamic sequential sampling.

The process induced by dynamic sequential sampling is akin to fictitious play (Brown

1951). For instance, when beliefs are Dirichlet and agents sample a fixed number of times,

this corresponds to a variant of fictitious play with sampling (Kaniovski and Young 1995).

Under dynamic sequential sampling, however, the number of samples a given agent draws

is an endogenous object and determined in a sequentially optimal manner.

It is now shown that indeed any steady state of the dynamic sequential sampling process

is a sequential sampling equilibrium. Take the operator f : Σ→ Σ from the definition of

sequential sampling equilibrium, where f (σ) = ( f i(σ−i))i∈I and f i(σ−i) = Eσ−i

[
bi

(
µi | Xτi

i

)]
denotes the expected gameplay of agents in role i ∈ I, given a selection of best-responses bi

to the agent’s beliefs held when they stop sampling. Let σn−1 ∈Σ denote the distribution of

actions in the data accumulated up to time n−1, n ∈N. Then, dynamic sequential sampling

gameplay at time t is distributed according to f (σn−1) and the resulting distribution of

accumulated data at the end of the period is then given by

σn = n
n+1

σn−1 + 1
n+1

f (σn−1).

7The results in this section go through if both sampling costs and priors are idiosyncratic to each agent and
drawn from a fixed distribution every period.
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I will denote {σn}n∈N0 as the dynamic sequential sampling gameplay process induced by

the extended game G.

Our first result in this section shows that, whenever the distribution of accumulated data

converges, it converges to a sequential sampling equilibrium, as does, of course, gameplay.

Theorem 2. For any extended game G and any σ0 ∈Σ, if the induced dynamic sequential

sampling gameplay process converges, its limit is a sequential sampling equilibrium of G.

Moreover, every sequential sampling equilibrium of G is a limit of a convergent dynamic

sequential sampling gameplay process.

Theorem 2 establishes for sequential sampling equilibrium and the dynamic process I de-

fined above an analogue to the seminal result in Fudenberg and Kreps (1993) relating

Nash equilibria and fictitious play, in the sense that sequential sampling equilibria coin-

cide with the limits of convergent dynamic processes. Moreover, I show that the dynamic

process as I defined above can be generalized. In the process described above, each obser-

vation has the same weight. One could think of a setting where the observations from the

near-past are more easily accessible. This can be modelled as a giving a different weight

to each period, for instance, exponential weighting: σn =ασn−1 + (1−α) f (σn−1), α ∈ (0,1).

The claim in Theorem 2 also holds under this alternative definition. The assumption that

there is a continuum of agents for each role is also not essential: A similar result holds

when the populations are finite.

While cycling may occur and preclude convergence of gameplay — similarly to what

occurs with fictitious play8 — in specific classes of games, convergence and asymptotic

stability are guaranteed.9 This next proposition provides one such condition, albeit a very

stringent one.

8The classical reference is Shapley (1964). Additionally, cycling can also occur with stochastic fictitious
play: see Hommes and Ochea (2012).

9An equilibrium σ is asymptotically stable if for all ε> 0, there is a δ> 0 such that for any σ0 : ‖σ0−σ‖∞ < δ,
‖σn −σ‖∞ < ε. That is, if the dynamic sequential sampling gameplay process, starting at σ0 close enough to
the equilibrium, remains close thereafter.
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Proposition 4. Let G = 〈Γ,µ, c〉 be an extended game such that Γ is a 2× 2 game with

a unique Nash equilibrium and players’ priors are absolutely continuous. Then, for any

selection of best-responses, the dynamic sequential sampling gameplay process {σn}n∈N0

converges to a sequential sampling equilibrium and this sequential sampling equilibrium

is globally asymptotically stable.

The proof for the first claim exploits results specific to 2×2 games that will be discussed in

Section 4. In particular, uniqueness of a Nash equilibrium imposes specific conditions on

the payoff structure. These conditions, as we will see later on, have a direct translation into

properties of the operator f , which I use to show local stability based on the eigenvalues

of the Jacobian matrix of the dynamic system. Then, local stability is extended to global

stability on the simplex by relying on a proof of the Jacobian conjecture for R2.

3. Relation to Nash Equilibrium

Our solution concept has players forming equilibrium beliefs according to an initial inter-

pretation of Nash equilibrium beliefs, whereby these are approximately reached by players

“accumulat[ing] empirical information” (Nash 1950). However, differently from what is

considered there, here players face a cost to acquire such information. Hence, a natural

question is whether, as these costs vanish, sequential sampling equilibria converges to a

Nash equilibrium. In this section I show that such intuition is indeed correct when priors

have full support.

As the sampling costs decrease, players that do not have a dominant action will acquire

more and more samples. Provided that the optimal stopping time grows unboundedly as

costs go to zero, one would expect that, by the law of large numbers, players learn the true

distribution of actions of their opponents and sequential sampling equilibrium converges

to a Nash equilibrium. Unfortunately, once we condition on stopping, the observations in

the stopping sample path cease to be independent or identically distributed, precluding

such a proof strategy. Therefore, I take a different approach.

I rely on the fact that optimal stopping time minimizes expected regret gross of sampling

costs and then show that a particular suboptimal stopping rule achieves zero expected
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regret gross of sampling costs. This particular stopping rule corresponds to stopping after

a fixed number of samples, unconditionally on the realized sample path and depending

only on the sampling cost. Then, optimal stopping will also attain null regret as costs

vanish, which is then used to show that sequential sampling equilibria converge to Nash

equilibria.

Let us formally define regret. The regret player i expects under stopping time ti ∈ Ti,

given their utility function, sampling cost and prior and their choices upon stopping, is

Ri(ti;ui,µi, ci) := Eµi

[
max
σ′

i∈Σi
ui(σ′

i, s−i)

]
−Eµi

[
ui

(
bi(µi | X ti

i ) , s−i

)]
.

Player i’s regret is then the difference between the expectation over the maximum utility

achievable, where the player knows the opponents’ gameplay, and the expected utility

attained from following stopping time ti.

A first result is that the optimal stopping time τi for player i minimizes the sum of expected

regret and total sampling costs.

Lemma 1. For any selection of best-responses bi,

τi ∈ argmin
ti∈Ti

Ri(ti;ui,µi, ci)+Eµi [ci · ti].

The proof of Lemma 1 extends Fudenberg et al.’s (2018) Proposition 2, which addresses

the case of two actions, continuous time and correct priors, with payoffs following inde-

pendent Gaussian distributions; I show that this holds in this environment as well. It states

that the optimal stopping problem that player i faces is equivalent to a regret minimizing

problem. This equivalence underlies the next lemma which is key for the main result in

this section:

Lemma 2. Let µi have full support. Then, for any sequence of sampling costs {ci,n}n∈N ⊂
R++ such that ci,n → 0 and for any selection of best-responses bi, Ri(τi,n;ui,µi, ci,n) +Eµi [ci,n·
τi,n]→ 0, where τi,n is an optimal stopping time under sampling cost ci,n.
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As mentioned at the beginning of this section, the proof involves constructing a potentially

suboptimal stopping time involving sampling a fixed number of samples that depends only

on the sampling cost. Then, we can use the law of large numbers for the observations

in stopping sample paths under this particular stopping rule and show that it attains zero

regret, gross of total sampling costs. The result then follows from Lemma 1.

The main result of this section is that, as sampling costs vanish, sequential sampling

equilibrium converges to a Nash equilibrium of the underlying game. Let ΣSSE(G) denote

the set of sequential sampling equilibria of the extended game G. The formal statement is

as follows:

Theorem 3. Let {cn}n∈N ⊂ R
|I|
++ such that cn → 0 and Gn = 〈Γ,µ, cn〉 be an extended game

with full-support priors. For any sequence {σn}n∈N ∈ ×n∈NΣSSE(Gn), its limit points are

Nash equilibria of the underlying game Γ.

The crucial argument in the proof of Theorem 3 is simple. If a limit point of such a

sequence is not a Nash equilibrium, then some player must experience strictly positive ex-

post regret. However, as sampling costs vanish, holding opponents’ gameplay fixed, the

player face no expected regret as shown in Lemma 2. The result follows by showing that

the former conclusion implies a violation of the latter.

It is noteworthy that convergence of sequential sampling equilibria to Nash equilibrium

crucially hinges on information acquisition to be sequentially optimal. In the Appendix, I

introduce a version of sequential sampling equilibrium where, instead of optimal stopping,

players are myopic with respect to information acquisition, considering the informational

value of just the next sample and neglecting the continuation value.10 Given such sampling

rule, I then illustrate how it fails to converge to a Nash equilibrium. The main reason for

this failure is that, in the limit, myopic sequential sampling players generically acquire a

bounded number of samples as sampling costs vanish.

10Such model has a direct correspondence to a representation of the value of reasoning in by Alaoui and
Penta (2018, Theorem 4).
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3.1. Reachability of Nash Equilibria

While equilibrium gameplay converges to Nash equilibria when priors have full support,

this does not imply that all Nash equilibria are reachable as a limit. As such, reachability

by sequential sampling equilibria with full-support priors leads to some selection principle.

The purpose of this section is to discuss which Nash equilibria can be selected in this

manner. Let us start by formally defining reachability.

Definition 2. Given game Γ, gameplay σ ∈ Σ is reachable with priors µ if there is a se-

quence of sampling costs {cn}n∈N ⊂R|I|
++ with cn → 0 and a sequence of sequential sampling

equilibria {σn}n∈N ∈ ×n∈NΣSSE(Gn), where Gn = 〈Γ,µ, cn〉 is an extended game, such that

σn →σ.

From Theorem 3, it is immediate that only Nash equilibria of the underlying game Γ are

reachable with full-support priors. Three questions arise: which Nash equilibria cannot

be reached, which can be reached with some collection of full-support priors, and which

can be reached with all full-support priors. In the next proposition I provide a sharp

characterization of the sets of Nash equilibria that can and cannot be reached.

Proposition 5.

(i) A Nash equilibrium is reachable with some full-support priors only if no weakly dom-

inated action is chosen with positive probability.

(ii) A pure-strategy Nash equilibrium is reachable with some full-support priors µ (po-

tentially allowing for correlation) if and only if it does not involve weakly dominated

actions.

Proposition 5 uncovers a meaningful relation of reachability by sequential sampling equi-

librium and dominance. First, it states that no Nash equilibrium involving weakly domi-

nated strategies with strictly positive probability is reachable. This follows from the fact

that full-support priors will, by definition, confer some positive mass to the event that

opponents choose actions under which a weakly dominated action yields a strictly lower

payoff than some other choice, making it unappealing for the player to ever choose it. Sec-

ond, I provide a partial converse: that any pure-strategy Nash equilibrium not involving

weakly dominated actions is reachable with some full-support priors. This results from
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the fact that an action which is not weakly dominated must be a best-response to some

interior action distribution of the opponents (potentially correlated) (Pearce 1984; Wein-

stein 2020). Thus, for part (ii) of the proposition, priors may need to allow for correlated

opponent gameplay. An immediate corollary to Proposition 5 is that any trembling-hand

perfect Nash equilibrium in pure strategies is reachable with some full-support prior.

Another interesting question is to characterize the set of Nash equilibria which one can

reach with all full-support priors. This stands as a robust selection criterion, as it requires

the action distribution to be the limit of a sequence of sequential sampling equilibria re-

gardless of the full-support priors players have. For this purpose, let us consider the fol-

lowing condition:

Definition 3. A Nash equilibrium σ∗ of a game Γ is strongly robust if there is an ε > 0

such that for any player i ∈ I, ∀σ−i ∈ Bε({σ∗
−i}), bi ∈ argmaxσi∈Σi ui(σi,σ−i).

This condition simply requires that σ∗
i be a best-response to any distribution of actions of

the opponents in an ε-neighborhood around σ∗
−i. This is satisfied, for instance, whenever

σ∗
i is a strict best-response to σ∗

−i, but the requirement is weaker, as it admits other actions

to be a best-response to σ∗
−i. On the other hand, it is stronger than trembling-hand per-

fection, as it requires that every players’ Nash equilibrium strategy be a best response to

any tremble of the opponents’ strategies.11 Under strong robustness, the following result

holds:

Proposition 6. Let σ be a pure-strategy Nash equilibrium of game Γ. For any full-support

priors µ, ∃c ∈ R|I|
++ such that σ is a sequential sampling equilibrium of the extended game

G = 〈Γ,µ, c〉 if an only if σ is a strongly robust Nash equilibrium,

This result directly implies that whenever a Nash equilibrium is strongly robust, it is reach-

able with any full-support priors. A simple corollary of Proposition 6 again relates domi-

nance and reachability:

Corollary 2. Any strict Nash equilibrium is reachable with any full-support priors.

11Strong robustness strictly strengthens the requirements imposed by trembling-hand perfect as given by the
equivalence laid out in Mas-Colell et al. (1995, Proposition 8.F.1). In fact, there are trembling-hand perfect
equilibria that cannot be reached with some full-support priors. Moreover, it can be shown that any Nash
equilibrium that satisfies strong robustness constitutes a singleton stable set (Kohlberg and Mertens 1986),
but that the converse is not true. A discussion and proof can be found in the Appendix C.
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4. 2×2 Games

In this section I will focus on 2×2 games, that is, two-player games where each player has

two actions, which is a canonical class of games used both for simple theory as well as

for experiments. I will label A i = A−i = {0,1} and, consequently, identify Σi and Σ−i with

[0,1], with σi denoting the probability that player i chooses action 1. For this section, I will

consider only priors µi ∈∆([0,1]) that are absolutely continuous on [0,1], the set of which I

will denote by M . I denote the density of prior µi by dµi.

In order to derive predictions of my solution concept for this class of games, I will first

provide some useful general implications of optimal stopping for a given player i, taking

the opponent’s behavior as exogenous. In other words, I characterize properties of the indi-

vidual optimal stopping problem in binary settings upon which the analysis of equilibrium

comparative statics will be developed.

4.1. Optimal Stopping and Comparative Statics

Let us first consider the optimal stopping problem for player i, with σ−i as an exogenous

distribution. There are three possible cases to consider: (i) player i has a weakly domi-

nated action, (ii) player i is indifferent between the two actions no matter which action

the opponent takes, and (iii) player i has no weakly dominated action nor is indifferent be-

tween the two actions. In cases (i) and (ii), it is immediate that player i will never benefit

from acquiring any information and then τi = 0. The main difference between (i) and (ii)

is that in (i), under any full-support prior, player i will choose the weakly dominant action

with probability 1 and in (ii) any mixing between the two actions is optimal. Focusing

now on case (iii) and given that I will be focusing on player i’s standpoint as a decision-

maker, assume without loss that ui(1,1)≥ ui(0,1),12 for otherwise actions of player −i can

be relabeled. In this case, ui(1,1)−ui(0,1)= δ1 > 0 and ui(0,0)−ui(1,0)= δ0 > 0.

12Where ui(0,1) corresponds to the payoff player i obtains when player i chooses 0 and player −i chooses
1.
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The following lemma shows that, in this class of games, a player is never indifferent

between the two actions at any belief held upon stopping, provided the player samples at

least once or is not indifferent under the prior.

Lemma 3. Let µi ∈M . If τi > 0, then for any selection bi of optimal choices, bi(µi | Xτi
i ) ∈

{0,1}.

Lemma 3 simplifies the discussion of comparative statics by allowing us to focus on pure

actions, ignoring randomization. The reasoning behind the proof is simple. Suppose that

player i stops sampling after observing a 0-valued sample leaving player i indifferent be-

tween the two actions (the argument is symmetric if the last sample is 1-valued). Then,

before observing the last observation, action 1 is optimal under player i’s prior, as observ-

ing a 0-valued observation induces a lower belief mean. Moreover, if the last observation

had instead realized to be 1-valued, player i would still want to choose action 1. This im-

plies that if player i stops sampling when indifferent between the two actions, whichever

action was optimal before taking the last sample is still optimal regardless of the realization

of the sample. Therefore, given that the player will not sample any further, the last sample

bears no informational value to the player. As the sample is costly, then it is suboptimal to

take it.

In order to state the main result in this section, let us introduce some notation. I will

say that a prior µi ∈ M MLR-dominates another prior µ′
i ∈ M — writing µi ≥MLR µ′

i —, if

dµi(σ−i) ·dµ′
i(σ

′
−i)≥ dµi(σ′

−i) ·dµ′
i(σ−i), whenever σ−i ≥σ′

−i, for σ−i,σ′
−i ∈ [0,1]. This simply

means that the probability density functions associated with µi and µ′
i have the monotone

likelihood ratio property, which is preserved under Bayesian updating.

The main theorem in this section characterizes comparative statics of the joint distribu-

tion of choices and stopping time with respect to payoffs, the opponents’ gameplay and

the player’s prior.

Theorem 4. Let ui(1,1)−ui(0,1) = δ1 > 0, ui(0,0)−ui(1,0) = δ0 > 0 and µi ∈ M . Then, for

any time t and any selection of optimal choices bi,

Pσ−i

(
bi(µi | Xτi

i )= 1 ∩ τi ≤ t
)
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(i) is increasing in the prior µi according to ≥MLR;

(ii) is strictly increasing and infinitely continuously differentiable in the opponent’s game-

play σ−i; and

(iii) is increasing in payoff difference δ1 and decreases in δ0.

Theorem 4 indicates how the probability that a player choosing an action up to time t

varies with (i) the player’s prior, (ii) the gameplay of the opponent, and (iii) the player’s

payoffs. As one might suspect, these results will serve as key inputs in providing compara-

tive statics for sequential sampling equilibrium in 2×2 games.

Let us go over the intuition for behind this result, keeping in mind that the expected value

to action 1 is increasing in σ−i. The proof for claim (i) follows from showing that the value

function is increasing in ≥MLR. From there, I show that given two priors, µi,µ′
i ∈M where

µi ≥MLR µ
′
i, if the player stops at µ′

i and takes action 1, then stopping at µi and taking action

1 is also optimal.13 The argument for why claim (ii) should hold is straightforward: higher

σ−i will increase the probability any given sample takes value 1 which makes player i more

likely to observe a sample path conducing to taking action 1. The fact that the probability

of choosing action 1 before time t is a polynomial with respect to σ−i implies the claim

on differentiability. Importantly, note that claim (ii) does not depend on whether player

i’s beliefs are correct or not. Instead, it relates both the choices and the stopping time

to the unknown true distribution of opponent’s actions that player i is uncertain about,

regardless of the prior beliefs that player i holds. Finally, claim (iii) follows immediately

from the fact that the set of stopping beliefs at which a given action is optimal increases in

set inclusion with respect to that action’s payoffs (Proposition 2) and the observation that

the player will never stop sampling when indifferent (Lemma 3).

Figure 2 illustrates the findings regarding the effects of varying payoffs, opponent’s game-

play, and the prior on the joint probability of taking a given action up to time t. As shown

in Theorem 4, the comparative statics are monotone. On the left-hand-side panels, I show

how the probability that action 1 is chosen is increasing in the payoffs associated to action

13This result can be extended beyond absolutely continuous priors, provided they are ranked according to
strong stochastic dominance (Lehrer and Wang 2020) which is necessary and sufficient for the priors to be
ranked according to first-order stochastic dominance and, for any realized sample path, for the posteriors
will retain the ranking. When the priors are absolutely continuous, strong stochastic dominance corresponds
to the monotone likelihood ratio ranking, ≥MLR .
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(c) Monotonicity in the Prior

Figure 2. Comparative Statics of Timed Stochastic Choice Data

Note: The figures illustrate the comparative statics results. Figures on the left illustrate the changes in
the probability that player i takes action 1; on the right the probability of taking such an action up to
time t is contrasted for two different parameter values. Payoffs are given by ui(1,1)−ui(0,1) = δ1 and
ui(0,0)−ui(1,0)= 1 and the prior is given by a Beta distribution with parameters 2 · (σ̂−i , 1− σ̂−i). Panel
(a) varies payoffs δ1 ∈R+. Panel (b) shows how different opponent’s gameplay σ−i ∈ [0,1] affect optimal
stopping. Panel (c) compares optimal stopping under different priors, varying σ̂−i, where priors with
higher σ̂−i MLR-dominate priors with lower values of σ̂−i. When unspecified, the prior is the uniform
distribution (σ̂−i = 1/2), payoffs are symmetric (δ1 = 1) and opponent’s gameplay is σ−i = 1/2. 30



1 (panel 2a); the probability with which the opponent chooses action 1 (σ−i), for which

player i’s action 1 is optimal (panel 2b); and player i’s prior, in the MLR partial order

(panel 2c). To easily obtain MLR-ranked priors, I use the fact that, for Beta priors with

parameters t̂i · (σ̂−i , 1− σ̂−i) ∈ R2++, the priors with higher σ̂−i ∈ (0,1) dominate those with

lower σ̂−i in the MLR partial order, for any fixed t̂i > 0. On the right-hand-side panels, I

illustrate these monotonicity results with respect to the joint probability that player i takes

action 1 up to any given time t for two particular values. It is worthy of mention that,

while opponent’s gameplay affects player i’s choices in a continuous manner, the same

does not happen with changes in either payoffs or the prior, owing to the discrete nature

of the signal structure that player i has available.

A useful property that enables sharper predictions from optimal stopping is linearity of

the prior in new information. This provides structure that mimics the behavior of Bayesian

updating for Gaussian priors.

Definition 4. A prior µi is said to be linear in the accumulated information if it is non-

degenerate and there are constants at,bt ∈ R such that for any sample path xt
i ∈ Xi of t

observations the posterior mean satisfies Eµi [s−i | xt
i]= at

∑t
`=1 xt

i,`+bt.

This property, together with the fact that beliefs are a martingale and some algebraic

manipulation, allows us to write the posterior mean as a convex combination of the prior

mean and the empirical mean of the accumulated information, Eµi [s−i | xt
i]=αt/t·∑t

`=1 xt
i,`+

(1−αt) ·Eµi [s−i], where αt/t = 1/((1−α1)/α1 + t) ∈ (0,1). This is extremely convenient as, by

linearity of expected utility, one can then analyze optimal stopping just relying on the

belief mean and the number of samples. In fact, as shown by Diaconis and Ylvisaker

(1979, Theorem 5), identifies a specific parametric class of priors: a prior µi is linear in

the accumulated information if and only if it is a Beta distribution.

Under such parametric restriction, we have the following characterization of the set of

beliefs at which player i optimally stops:

Proposition 7. Let ui(1,1)− ui(0,1) = δ1 > 0, ui(0,0)− ui(1,0) = δ0 > 0 and µi be linear in

the accumulated information. Then, there are functions σ−i,σ−i : R++ → [0,1]∪ {;} such

that player i keeps sampling at time t if and only if Eµi [s−i | xt
i] ∈ (σ−i(t),σ−i(t)), where
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σ−i is decreasing and σ−i is increasing in t. Moreover, whenever σ−i(t),σ−i(t) ∈ [0,1],

σ−i(t)≥ δ0/(δ0 +δ1)≥σ−i(t) and ∃T such that σ−i(T)=σ−i(T)= δ0/(δ0 +δ1).

Proposition 7 shows that, under the condition that beliefs are linear in accumulated infor-

mation, it is sufficient to consider the posterior mean to characterize the beliefs at which

player i continues sampling at any given moment as is illustrated in Figure 3. It states

the existence of an upper and lower bound on posterior means that are continuous and

exhibit two crucial properties. First, the upper bound is decreasing and the lower bound

is increasing in accumulated information or time. This translates to this setting what is

commonly known in the neuroscience literature as “collapsing boundaries” (e.g. Hawkins

et al. 2015; Bhui 2019).

Moreover, this fact, together with Theorem 4 indicates that player i’s beliefs are increas-

ing in the true probability distribution of the samples, σ−i, in a distributional sense. I will

refer to σ̂−i(X
τi
i ) as player i’s stopping threshold beliefs, where

σ̂−i(X
τi
i ) :=σ−i(t̂i +τi) ·bi(µi | Xτi

i )+σ−i(t̂i +τi) · (1−bi(µi | Xτi
i )),

given the player’s prior µi being Beta distributed with parameters t̂i · (σ̂−i,1− σ̂−i).14 Then,

we have that player i’s stopping threshold beliefs increase in a first-order stochastic dom-

inance sense with respect to σ−i, as a higher σ−i leads to a higher probability that player

i chooses action 1 faster (action 0 slower), implying that the posterior mean has to ex-

ceed a higher threshold when the player stops earlier (later), as the upper (lower) bound

characterizing the continuation region is decreasing (increasing) in time.

The second implication of Proposition 7 is that stopping time is an indicator of the inten-

sity of player i’s preference towards one action over another. This follows because both the

upper and lower bounds on the continuation region are “collapsing” towards the player’s

indifference point. In other words, we have that at any point in time, player i samples if

and only if the player is sufficiently close to being indifferent between the two alternatives.

Moreover, the more information is accumulated, the closer to indifferent player i needs to

14This formulation is convenient to discuss the player’s beliefs upon stopping in that it avoids discreteness
issues inherent to the sampling procedure. Note that when stopping upon observing Xτi

i , player i’s posterior
mean first exits the continuation region by exceeding the continuation region threshold value σ̂−i(X

τi
i ). In

particular, it is possible to show that
∣∣Eµi [s−i | Xτi

i ]− σ̂−i(X
τi
i )

∣∣< 1/(t̂i +τi).
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Figure 3. Stopping Regions for Beta Priors

Note: The panel on the left shows the stopping threshold for posterior means at which player i with
a Beta prior stops. The upper and lower bound collapse to the indifference point, in this case 1/3.
The panel on the right illustrates the possible posterior means that a player starting with a uniform
prior (Beta(1,1)) can attain depending on the sample path observed. When this sample path exists the
continuation region, the player stops sampling and takes the action which is optimal at that posterior
belief; in this case, action 1, if the belief is above 1/3 and action 0 if otherwise. The parameters of the
Beta distribution are defined for convenience as t̂ · (σ̂−i , 1− σ̂−i), where t̂ > 0 and σ̂−i ∈ [0,1] coincides
with the posterior mean. Payoffs are such that ui(1,1)−ui(0,1)= 2(ui(0,0)−ui(1,0))> 0.

be to continue sampling, a phenomenon that has been documented in experimental set-

tings in individual decision-making (e.g. Konovalov and Krajbich 2019).

It is interesting to note that when the absolute difference in the expected payoffs is known

— the case where the prior’s support is a doubleton — the stopping region is characterized

by fixed bounds in terms of the posterior means as shown by Arrow et al. (1949). In

contrast, when there is richer uncertainty about the difference in expected payoffs, as

when the prior is given by a Beta distribution, the stopping region is characterized by

bounds that collapse to the posterior mean that makes the individual indifferent between

the two alternatives. Thus, a clear parallel between the setup in this paper and that in

Fudenberg et al. (2018) emerges, where the individual infers the difference in payoffs of

two alternatives from the drift of a Brownian motion and a similar contrast between known

and unknown payoff differences gives rise to, respectively, fixed and collapsing stopping

bounds. An important difference is that in Fudenberg et al. (2018), collapsing boundaries

hold on average and when individuals have correct priors, while in my model they hold

even without these qualifications.
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4.2. Equilibrium and Comparative Statics

The analysis for equilibrium comparative statics in 2× 2 games stems directly from the

results on optimal stopping time.

A first observation is that uniqueness of a Nash equilibrium in a 2×2 game generically

implies uniqueness of a sequential sampling equilibrium whenever players’ priors are ab-

solutely continuous.

Proposition 8. Let G = 〈Γ,µ, c〉 be an extended game such that Γ is a 2×2 game and priors

are absolutely continuous. Suppose each player i ∈ I samples at least once, τi > 0, or is not

indifferent between the two actions under their prior, Eµi [ui(0,σ−i)], Eµi [ui(1,σ−i)]. Then

if Γ has a unique Nash equilibrium, there is a unique sequential sampling equilibrium.

Furthermore, a converse holds if both players sample at least once.

The requirement in Proposition 8 for uniqueness of a sequential sampling equilibrium rules

out cases where a player faces a sampling cost ci so high that it is optimal to not sample

at all and, at the same time, is indifferent between the two alternatives according to their

prior. In such knife-edge cases, there will be multiple sequential sampling equilibria as any

distribution of choices of that player is optimal.

The result follows from the comparative statics results derived in Theorem 4. For the

case where the unique Nash equilibrium is in pure strategies, one of the players has a

dominant strategy and will play one of the actions with probability one. Then, the other

player either does not sample and has a unique best response to their prior, as they are

not indifferent between the two actions; or they do sample and, as the players never

stop sampling when indifferent and as they will always observe the same sample path

(the opponent plays the dominant action), the will also always play the best-response to

their unique posterior mean upon stopping. In particular, when there is a unique Nash

equilibrium in pure strategies and both players sample, the unique sequential sampling

equilibrium coincides with the unique Nash equilibrium.

When, instead, the unique Nash equilibrium is in mixed strategies, the result is obtained

by noting that, whenever a player i samples at least once, the probability of choosing

any given action, f i(σ−i) = Pσ−i (bi(µi | Xτi
i ) = 1) is continuous and monotone, being either
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Figure 4. Generalized Matching Pennies

Note: δk,γk > 0, k = 0,1.

strictly increasing or strictly decreasing for σ−i ∈ (0,1). Monotonicity in the opponent’s

gameplay together with the fixed point condition then implies uniqueness of a sequential

sampling equilibrium. This unique sequential sampling equilibrium corresponds to the

unique and asymptotically globally stable steady state of the dynamic sequential sampling

gameplay process analyzed in Section 2.2. Moreover, it should be easy to see that, follow-

ing the same arguments, a similar result holds when discussing symmetric equilibria: if

there is a unique symmetric Nash equilibrium then, when both players hold the same prior

and face the same sampling cost, there will be a unique symmetric sequential sampling

equilibrium under the conditions of Proposition 8.

While uniqueness of a Nash equilibrium implies uniqueness of a sequential sampling

equilibrium, it is not the case that the two coincide. As I mentioned before, they coincide

whenever the Nash equilibrium is in pure strategies and one of the players samples at

least once.15 When the Nash equilibrium is in fully-mixed strategies — the only other case

possible when the Nash equilibrium is unique in a 2×2 game —, the unique sequential

sampling equilibrium will converge to the Nash equilibrium in the limit as sampling costs

vanish (Proposition 5). However, for any fixed sampling costs, in general, not only can the

Nash equilibrium and the sequential sampling equilibrium differ, the two will also imply

different comparative statics, as we shall see next.

A well-known and counter-intuitive prediction of Nash equilibrium pertains to general-

ized matching pennies, that is, 2×2 games with a unique Nash equilibrium in fully mixed

strategies, whose structure is illustrated in Figure 4. When the payoffs to action 1 of player

i increase, Nash equilibrium predicts that the probability with which action 1 is chosen re-

mains the same and it is, instead, the opponent’s mixed strategy that changes to make

player i indifferent between choosing any of the two actions — what one could call the

15This conclusion is immediate from the proof of Proposition 8.
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opponent-payoff choice effect. However, experimental evidence shows that increasing

player i’s payoffs to an action leads that player to choose that action more often, what has

been since termed the own-payoff effect.16 For reasons that will be apparent, I will replace

this term with the more descriptive term own-payoff choice effect.

Sequential sampling equilibrium not only implies the own-payoff effect, it also provides

additional predictions regarding beliefs and decision times. While quantal response equi-

librium also rationalizes the own-payoff choice effect, it does so by directly embedding

monotonicity of choices with respect to payoffs in the assumptions for players’ behavior,

being monotonicity one of its defining assumptions (Goeree et al. 2005). In contrast, in

my solution concept this monotonicity in payoffs follows from the effects that payoffs have

on how players acquire information and, consequently, on their stopping time, as this next

proposition highlights.

Proposition 9. Let G = 〈Γ,µ, c〉 be an extended game such that priors are absolutely con-

tinuous and Γ is a generalized matching pennies game. Suppose that both players sample

at least once. Then,

(i) the probability of player i choosing action 1 increases in action 1’s payoffs;

(ii) the probability of player −i choosing action 0 up to time t increases in player i’s

payoffs to action 1 for any t ≥ 0.

The reasoning for the first claim in Proposition 9 is straightforward and illustrated in

Figure 5. The higher are player i’s payoffs to action 1, the more likely is the player to

choose it, for any distribution of player −i’s choices. As player i’s probability of choosing

action 1 is increasing in the probability that the opponent also chooses it and as the inverse

is true for player −i, the unique sequential sampling equilibrium shifts according to the

own-payoff choice effect.17

16This finding has been replicated several times, namely by Ochs (1995), McKelvey et al. (2000) and Goeree
and Holt (2001).
17A similar result holds in my model with respect to symmetric anti-coordination (extended) games. In such
case, the unique symmetric sequential sampling equilibrium exhibits the own-payoff effect under the same
conditions as in generalized matching pennies. This matches gameplay patterns documented in experimental
settings by Chierchia et al. (2018) in the context of symmetric two-player anti-coordination games. As for
2×2 games with multiple Nash equilibria, all pure strategy Nash equilibria in undominated strategies can
be sequential sampling equilibria of a given extended game with full-support priors, provided the sampling
costs are sufficiently small — a proof of this claim follows the same arguments to that of Proposition 6.
Consequently, no meaningful comparative statics results are possible.
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Figure 5. Comparative Statics in Generalized Matching Pennies

Note: The figure illustrates how sequential sampling equilibrium implies the own-payoff effect in the
context of generalized matching pennies. The unique sequential sampling equilibrium is given by
intersection of the blue and the orange curves. Priors correspond to the uniform distribution and
payoffs are given by δ0 = γ0 = γ1 = 1.

The second comparative statics result regards stopping time and, therefore, has no par-

allel in the literature: player −i chooses action 0 not only more often but also faster. That

is, for any time t, the probability with which player −i stops sampling before t and takes

action 0 increases. I call this the opponent-payoff time effect. This result holds regard-

less of whether player i is choosing action 1 with high or low probability to start with.

For player i, the increase in the payoffs to action 1 and the decrease in the probability

their opponent chooses action 1 lead to opposing forces. In contrast to their net effect

on choices alone, the net effect on the joint distribution of choices and stopping time is

ambiguous. Moreover, as the result does not depend on t, we then have that sequential

sampling equilibrium also predicts the opponent-payoff choice effect.

Additionally, when a player’s prior is linear in accumulated information, we have a further

implication: an opponent-payoff belief effect. Under this assumption, a player’s stopping

threshold beliefs are monotone in a distributional sense with respect to the opponent’s

equilibrium gameplay.18 In other words, when increasing the opponent’s payoffs to an

18This follows from the discussion of Proposition 7, collapsing boundaries together with monotonicity of the
joint distribution of actions and stopping times in the opponent’s distribution of actions.
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action, we have that, in equilibrium, the distribution of beliefs shifts towards assigning a

greater probability to the opponent taking that action.

4.3. Experimental Evidence

In the previous sections I discussed a number of behavioral implications of sequential

sampling equilibrium for generalized matching pennies games. In this section, I provide

suggestive experimental evidence supporting these predictions.

As we will see, it is convenient to list these predictions restated in context of games such

as that in Figure 6, taking as given the restrictions for the priors discussed earlier. First, in

terms of comparative statics predictions, we have that increasing δM leads to

1. Opponent-payoff choice effect: player C chooses action b more often;

2. Own-payoff choice effect: player M chooses action a more often;

3. Opponent-payoff time effect: the probability with which player C chooses action b

up to time t increases;

4. Opponent-payoff belief effect: the distribution of player C’s (threshold) beliefs holds

upon stopping increases in a first-order stochastic dominance sense.

Moreover, within a given game, we further have that

5. Time-revealed preference intensity: players are closer to indifferent at slower deci-

sions; and

For the purpose of investigating whether these predictions hold in the data, I will rely on

experimental data generously made available by Friedman and Ward (2019) who collected

data on choices, beliefs, and decision times for six different generalized matching pennies

games. The goal of this exercise is not to fit data or claim that sequential sampling equi-
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librium perfectly describes subjects’ behavior or that it does so better than other existing

models, but rather to present suggestive evidence supporting its behavioral implications.

A total of 164 subjects were recruited for sessions run in the Columbia Experimental

Laboratory in the Social Sciences (CELSS) to play matching pennies games as the one

depicted in Figure 6. In this game, subjects in the role of player M want to match the action

chosen by their opponent and those in the role of player C want to clash or mismatch.

Subjects are randomly and anonymously matched, but their roles are fixed throughout.

Player M’s payoff to action a, δM, took one of six values (here rescaled by a factor of 20

for convenience): 4, 2, 1/2, 1/4, 1/10, and 1/20.

The experiment consisted of two stages. In the first stage, actions elicited and each game

is played twice. In the second stage, each game is played 5 times and either both actions

and beliefs about the probability that the opponent chooses action a are elicited or only

actions are elicited. Beliefs here refer to point estimates reported by the subjects, neglect-

ing any strategic uncertainty. In other words, belief reports would correspond to posterior

means in our framework. Elicitation of actions and beliefs is incentive-compatible and

robust to risk attitudes and game payoffs correspond to probability points towards prizes

of $10. Throughout, no feedback was provided, game order was randomized and, impor-

tantly for our purposes, decision times are recorded. Other details on the experimental

design can be found in Friedman and Ward (2019).

There are some important caveats to note. First, beliefs elicited in the second stage refer

to opponent’s actions from the first stage. This, together with the fact that elicitation of

actions and beliefs is sequential instead of simultaneous, with beliefs being elicited first,

may raise concerns of whether reported beliefs are a good proxy for the beliefs that subjects

hold when taking an action. Second, while decision time was recorded, subjects are forced

to wait a minimum of 10 seconds before reporting their beliefs. As the subjects’ decision

times will be used as a proxy to test sequential sampling equilibrium’s predictions for

stopping times, the forced minimum decision time may undermine the exercise. Finally,

the authors highlight there being evidence of “no-feedback learning” as the same subject

plays the same game multiple times. This is especially worrying when comparing instances

where only actions are elicited with those where both actions and beliefs. In order to avoid

issues due to experience or learning, and focus on initial response as much as possible, I
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Table 1. Own- and Opponent-Payoff Choice Effects

Dep. Variable: {Player M chooses a} {Player C chooses a}
OLS Logit OLS Logit

δM /(1+δM) 0.23 0.95 -0.77 -3.43
(0.04) (0.17) (0.04) (0.19)

Intercept 0.33 -0.70 0.84 1.52
(0.02) (0.08) (0.02) (0.09)

N 1782 1782 1806 1806
(Pseudo) R2 0.02 0.01 0.20 0.15

Note: Data from Friedman and Ward (2019), using only sessions without belief
elicition only. Heteroskedasticity-robust standard errors in parentheses.

will focus on choice data when beliefs are not elicited; a separate treatment of choice data

when both actions and beliefs are elicited is given in the appendix.

A first observation is that the experiment replicates the own- and opponent-payoff choice

effects, which were replicated in many different papers as mentioned earlier (see footnote

16). That is, the frequency with which player M takes action a increases in δM — the

own-payoff choice effect — and player C takes action a less often under higher δM — the

opponent-payoff choice effect. Table 1 provides evidence that this is indeed the case in the

data when looking at instances when beliefs are not elicited.19

A more surprising finding is that when increasing δM subjects in the role of player C do

tend to choose action b not only more often but also faster, the opponent-payoff time effect

(Proposition 9). Figure 7a provides suggestive evidence for this this novel prediction if one

is to interpret stopping time as a proxy for decision times. The figure suggests the exact

pattern predicted by sequential sampling equilibrium for the joint distribution of actions

and stopping time.

The results on optimal stopping also have a direct implication for equilibrium beliefs.

A general feature of sequential sampling equilibrium is that players’ equilibrium beliefs

— that is, beliefs held at the time where players make their choices — are themselves

random. This follows from the fact that players’ equilibrium beliefs depend on the sample

19When beliefs are elicited, the data exhibits the opposite behavior for player M. Although this is an in-
teresting pattern that ought to be analyzed further, it may be due to experience effects and potentially
compromises the use of this second stage data as initial response choice data.
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Figure 7. Opponent-Payoff Time and Belief Effects

Note: Panel 7a shows the frequency with which subjects in the role of player C
take action b before time t (in seconds) in different games. This figure uses only
choice data for instances where beliefs were not elicited. The same patterns are
visible when beliefs are elicited (see Appendix D). Panel 7b exhibits the frequency
with which subjects in the role of player C take action b before time t (in seconds)
in different games. Games are indexed by player M’s payoff values of δM /(1+δM).
The data is from Friedman and Ward (2019).
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Table 2. Opponent-Payoff Belief Effect: FOSD Tests

Kolmogorov-Smirnov Tests of Reported Posterior Means for Player C’s
Games indexed by δM /(1+δM)

0.8 ≥FOSD 0.67 0.67 ≥FOSD 0.33 0.33 ≥FOSD 0.2 0.2 ≥FOSD 0.09 0.09 ≥FOSD 0.05

0.332 0.764 0.404 0.225 0.229
(<.0001) (<.0001) (<.0001) (<.0001) (<.0001)

Note: The table exhibits the results of two-sample Kolmogorov-Smirnov tests for first-order stochastic
dominance of the distribution of reported beliefs by subjects in the role of player C in games with
different values of δM /(1+δM). The values presented correspond to the test statistic; p-values are given
in parentheses. The data is from Friedman and Ward (2019).

path observed up to the moment when they stop sampling. Thus, the randomness in the

observed samples translates into randomness of the player’s beliefs. This randomness is

present in Friedman and Ward’s (2019) data: subjects observe the same game multiple

times and report different beliefs.

Furthermore, under the condition of Beta priors, we have seen that players’ beliefs are

responsive to the gameplay of their opponent, leading to an opponent-payoff belief effect.

That is, increasing δM, player M’s payoff to action a, results in a first-order stochastic

dominance shift in player C’s distribution of stopping threshold beliefs towards assigning

greater probability to player M taking action a. This exact pattern is visible in Figure 7b

and Table 2 corroborates the dominance ranking that is apparent in the figure.

Another implication of Beta-distributed priors is the idea that beliefs held at later stop-

ping times are closer to their indifference point, that is, the opponent action distribution

that makes the player indifferent between the two actions. Indeed, as shown in Propo-

sition 7, under the assumption of Beta priors, the continuation region in binary settings

is characterized by an upper and a lower bound on posterior means that monotonically

collapse to this indifference point. And, consistently, I find that decision time is negatively

correlated with the distance between reported beliefs and players indifference point, as

shown in Table 3.
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Table 3. Decision Time and Reported Beliefs: Time-Revealed Preference Intensity

Dep. Variable: Distance between Reported Beliefs
and Indifference Point

Player M Player C Both

Log Decision Time (secs) -2.55 -2.13 -3.69
(1.20) (0.88) (0.79)

Action × Log Decision Time -2.97 0.15 -1.34
(0.34) (0.26) (0.23)

Intercept 43.32 45.31 49.12
(4.03) (2.68) (2.52)

Controls Yes Yes Yes

N 1620 1680 3300
R2 0.13 0.27 0.14

Note: The table presents regression results on the relation between decision times and the distance
between reported beliefs to indifference points with data from Friedman and Ward (2019), made avail-
able by the authors. Reported beliefs refer to the elicited beliefs about the probability the opponents
would play action a. Indifference point refers to the posterior mean that would make the player in-
different between taking either action and distance refers to the Euclidean metric. The left-most and
middle columns use data for subjects in the role of player 1 and player 2 only, respectively; the right-
most column uses both. Action refers to a binary variable that takes value 1 if the subject chose action
a and zero if otherwise. Game fixed-effects controls were included; the results are robust to excluding
these. Heteroskedasticity-robust standard errors in parentheses.
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5. Extensions to Games of Incomplete Information

In this section, I focus on games of incomplete information. I assume that players have ac-

cess to data on gameplay and types as is, for example, the case with bids in past auctions or

similar strategic situations they previously faced and rely upon to form their beliefs. In such

cases, however, it may be sensible to assume that players cannot perfectly distinguish types

in the data. In keeping with the auction example, while the bidders’ actual willingness-to-

pay may not be observable, there could be data available on socio-demographic covariates

providing some coarse signal on willingness-to-pay.

In what follows, I extend my solution concept to model these more general environments

and discuss how it relates to both Bayesian Nash equilibrium and analogy-based expecta-

tion equilibrium (Jehiel and Koessler 2008). In brief, when players can observe types in

their samples, as sampling costs vanish, the solution concept converges to a Bayesian Nash

equilibrium, but when players cannot fully differentiate between types, limiting sequential

sampling equilibria correspond to analogy-based expectations equilibria.

Let Γ = 〈I, A,Θ,u,ρ〉 denote a game of incomplete information, where I is a finite set of

players, A = ×i∈I A i, with A i being i’s finite set of actions, Θ = ×i∈IΘi with Θi denoting

the finite set of player i’s possible types, u = (ui)i∈I a vector of payoff functions where

ui : A×Θ→ R denotes i’s payoff function and ρ ∈∆(Θ) a probability distribution over type

profiles.

For each player i, let Ξi := A−i ×Θ. Each player is endowed with a prior µi ∈ ∆(∆(Ξi)),

which allows for player i to know ρ or to be uncertain about the exact distribution of types.

As before, each player is able to observe samples from a stochastic process Xi at a cost per

observation of ci > 0.

In contrast to previous sections, I am going to allow for more general information struc-

tures in that players need not perfectly observe the realized types and actions of their

opponents. Let E i be a partition of Ξi with generic element εi. The process Xi = {X i,t}t∈N

is now E i-valued, being defined on a general probability space (Ω,F ,P) and P(ω : X i,t(ω)=
εi) = ∑

(a−i ,θ)∈e i ρ(θ)σ−i,θ−i (a−i), where σ−i,θ−i (a−i) = ∏
j∈−iσ j,θ j (a j) and σ j,θ j (a j) will denote

the probability with which player j with type θ j chooses action a j.
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Player i’s problem is then analogous to that in complete information games, with vi,θi (µi) :=
maxσi∈Σi Eµi [ui(σi,σ−i,θ) | θi] and

Vi,θi (µi) := sup
tiTi

Eµi

[
vi,θi (µi | X ti

i )− ci · ti | θi

]
where Ti denotes the set of all stopping times adapted with respect to the natural filtration

of Xi and X t
i = (X i,`)t

`=1. By the same arguments, the earliest optimal stopping time for a

player i with type θi is given by τi,θi := inf
{
t ∈N0 | Vi,θi (µi | X t

i )= vi,θi (µi | X t
i )

}
.

I will call an analogy-based sequential sampling equilibrium of the extended game

〈Γ,E ,µ, c〉 a strategy profile σ = (σi,θi θi ∈ Θi, i ∈ I) such that ∀i ∈ I and ∀θi ∈ Θi, there is

an optimal selection σ∗
i,θi

:∆(∆(Ξi)) → Σi where σ∗
i,θi

(µi) ∈ argmaxσi∈Σi Eµi [ui(σi,a−i,θ) | θi]

such that σi,θ = Eρ,σ−i,θ−i

[
σ∗

i,θi

(
µi|Xτi,θi

i

)]
, where with probability

∑
(a−i ,θ)∈εi ρ(θ)σ−i,θ−i (a−i)

X i,t = εi, with τi,θi finite almost surely.

The definition is analogous to sequential sampling equilibrium as defined earlier in the

paper except that now players have types that refine their beliefs and a general signal

structure that provides information on both gameplay and types. In particular, the parti-

tions E i allow for a player to not be able to distinguish between some actions that their

opponents take at a specific state or type profile θ, which is precluded from the type of

analogy partitions considered by Jehiel and Koessler (2008).

I will consider two specific kinds of analogy partitions:

Condition 1. For every i ∈ I, all elements of E i are singletons.

Condition 2. For every player i ∈ I, there is a partition E i of Θi such that for every εi ∈ E i,

there e i ∈ E i and a−i ∈ A−i where εi = {a−i}×e i. Moreover, for every θi,θ′i ∈Θi and θ−i,θ′−i ∈
Θ−i, if (θi,θ−i), (θ′i,θ

′
−i) ∈ e i, then θi = θ′i.

Condition 1 states that the analogy partitions are the finest possible, implying that each

player i will be able to perfectly observe the actions and types that are sampled. That

is, the player could potentially fully learn the joint distribution of actions and types with

enough observations being sampled and an adequate prior. Condition 2 instead states

that the analogy partitions are finer than the partition induced by information the player
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possesses by knowing their type.20 In particular, Condition 2 implies that actions of the

opponents are perfectly observed but their types may not be. It provides an analogue to

the kinds of analogy partitions in Proposition 2 of Jehiel and Koessler (2008). For every

e i ∈ E i, I will denote by e i(θ) the set of θ′ ∈Θ such that θ,θ′ ∈ e i(θ).

The next proposition relates the limit of a sequence of analogy-based sequential sampling

equilibria to Bayesian Nash equilibria of the underlying game of incomplete information

Γ and to the analogy-based expectation equilibria of the strategic environment 〈Γ,E 〉. A

Bayesian Nash equilibrium of Γ is an action distribution σ = (σi,θi , i ∈ I, θi ∈Θi) such that

for every player i ∈ I with type θi ∈Θi,

σi,θi ∈ argmax
σi∈Σi

∑
θ−i∈Θ−i

ρ(θ−i | θi)ui(σi,σ−i,θ−i ,θi,θ−i),

where ρ(θ−i | θi)=
(
ρ(θi,θ−i)

)/(∑
θ−i∈Θ−i ρ(θi,θ−i)

)
.

Adjusting Jehiel and Koessler’s (2008) notation to this setting, an analogy-based expecta-

tion equilibrium of the strategic environment 〈Γ,E 〉21 where the analogy partitions satisfy

Condition 2 is an action distribution σ= (σi,θi , i ∈ I, θi ∈Θi) such that for every player i ∈ I

with type θi ∈Θi,

σi,θi ∈ argmax
σi∈Σi

∑
θ−i∈Θ−i

ρ(θ−i | θi)
∑

a−i∈A−i

σ−i(a−i | θi,θ−i)ui(σi,a−i,θi,θ−i),

where σ−i(a−i,θ) denotes the probability with which average gameplay of i’s opponents

within the element of the partition e i(θ), that is,

σ−i(a−i | θ)=
( ∑
θ′∈e i(θ)

ρ(θ′) ·σ−i,θ′−i
(a−i)

)/( ∑
θ′∈e i(θ)

ρ(θ′)

)
.

When the analogy partitions satisfy instead Condition 1, analogy-based expectation equi-

librium coincides with Bayesian Nash equilibrium.

We then have the following result:

20Such a partition is given by {Pi(θi), θi ∈Θi}, where Pi : Θi â Ξi be such that Pi(θi) = {(a−i,θi,θ−i), a−i ∈
A−i, θ−i ∈Θ−i}.
21The definition of analogy-based expectation equilibria in Jehiel and Koessler (2008) corresponds to static
games of incomplete information counterpart of the original formulation by Jehiel (2005) which concerns
multi-stage games with observable actions.
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Proposition 10. Let {cn}n∈N ⊆ R|I|
++ such that cn → 0 and Gn = 〈Γ,E ,µ, cn〉 where priors are

absolutely continuous. Fix any sequence {σn}n∈N where for every n ∈N σn is an analogy-

based sequential sampling equilibrium of Gn.

(i) If analogy partitions satisfy Condition 1, then the limit points of {σn}n∈N are Bayesian

Nash equilibria of the underlying game Γ.

(ii) If analogy partitions satisfy Condition 2 and priors are uniform, then the limit points

of {σn}n∈N are analogy-based expectation equilibria of the strategic environment

〈Γ,E 〉.

When players are able to perfectly distinguish their opponents’ actions and types in

their samples, in the limit when sampling costs vanish, my solution concept extended

to Bayesian games selects a Bayesian Nash equilibrium of the underlying game. This is

quite natural, as they are then able to learn the joint distribution of types and opponents’

actions with enough observations and thus a no-regret argument akin to the one in Lemma

2 delivers the result for the limiting gameplay.

When players can observe their opponents’ actions but not necessarily their types, in the

limit, it selects an analogy-based expectation equilibrium of the associated strategic envi-

ronment when priors are uniform. Hence, analogy-based sequential sampling provides a

foundation for the learning interpretation posited by Jehiel and Koessler (2008), where

the analogy partitions correspond to a constraint on the observable past data by the play-

ers. Finally, as noted by Jehiel and Koessler (2008), when the players analogy partitions

pool together all the opponents’ types, analogy-based expectation equilibrium that the

limiting analogy-based sequential sampling equilibrium selects will also be a fully cursed

equilibrium (Eyster and Rabin 2005).

There are two caveats to this result. First, I restrict to analogy partitions that are finer

than the players’ private information. Second, I require priors to be uniform. When this

is not the case, in general, priors will still exert some influence over the posteriors, as the

data that players observe is coarse, and thus, in the limit, the beliefs about the opponents’

gameplay may not coincide with the beliefs given by analogy-based expectations.22

22For instance, if player i cannot distinguish between samples that regard opponents with types θ−i and θ′−i,
then the posterior probability that (a−i,θi,θ−i) relative to (a−i,θi,θ′−i) remains unchanged regardless of the
sample path observed, as the observations will not allow player i to distinguish between the two.
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6. Conclusion

This paper proposes an equilibrium framework for strategic settings where players face

strategic uncertainty regarding their opponents’ gameplay and form their beliefs by ac-

cumulating evidence based on a sequential sampling procedure. Equilibrium conditions

impose a consistency requirement between the gameplay and the distribution of the evi-

dence that is shown to have a natural interpretation as a steady state of a dynamic process

akin to fictitious play. Importantly, and differently from other models of information ac-

quisition in strategic settings, there is no exogenous uncertainty: players seek evidence to

inform their beliefs about how others behave.

My solution concept is closely related to other equilibrium models. It provides a founda-

tion for Nash equilibrium, given that, as sampling costs vanish, sequential sampling equi-

librium approaches Nash equilibria. Moreover, the model extends to games of incomplete

information where it is similarly related to Bayesian Nash equilibrium and analogy-based

expectation equilibrium. In drawing such connections, it highlights the importance of

strategic uncertainty in rationalizing deviations from these benchmark models.

The sequential sampling equilibria provides a disciplined framework to study the joint

distribution of choices, gameplay and decision time in strategic settings. Underlying my

solution concept, this paper develops and analyzes a model of individual decision-making

with costly information acquisition based on sequential sampling which delivers stochastic

choice without relying on indifference or mistakes in a rich environment. Several mono-

tone comparative statics results are established and shown to match well-known patterns

in experimental data that elude Nash equilibrium such as the own-payoff effect. More-

over, as we have seen, the model makes novel predictions regarding how choices relate to

decision times that are supported by existing data.

While not emphasized in this paper, the model is able to account for play of non-rationalizable

actions. Extending results in Gonçalves (2020) — which regard a new class of dominance-

solvable games — one can show23 that sequential sampling equilibrium is not only able

to account for play of iteratedly dominated actions, it also supports an experimental find-

ing in Esteban-Casanelles and Gonçalves (2020): as payoffs are scaled up, actions taken

23Relying on Proposition 1 and Propositions 3 and 7 in that paper.
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correspond to more sophisticated level-k play. Thus, sequential sampling equilibrium can

also be seen as bridging the standard equilibrium framework and models of endogenous

and costly reasoning (e.g. Alaoui and Penta 2016).

One key feature of my solution concept is the exogenous nature of the priors. Imposing

priors to be correct eliminates any strategic uncertainty players may face and makes my so-

lution concept coincide with Nash equilibrium. One may wonder whether, if priors are re-

quired to be consistent with gameplay — that is, correct on average — but non-degenerate,

retaining some element of strategic uncertainty, one still obtains a coincidence with Nash

equilibrium. The answer is negative: even if priors are restricted to be consistent, equilib-

rium gameplay and comparative statics would not coincide with those predicted by Nash

equilibrium.

Two avenues for future work are logical next steps and, indeed, work in progress. The

first is to test the solution concept’s predictions. Despite supporting evidence for the

model’s predictions having been presented, its explanatory power remains unclear. Its

sharp predictions in 2×2 games merit testing in an experimental context. The second is to

utilize this novel framework to provide new insights on canonical economic problems such

as voting, pricing, bargaining, and investment decisions and speculative trade. In these

economic settings, actors surely face strategic uncertainty, and yet can access past data

from analogous previous interactions. I view this as an exciting avenue for future work.
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B. Omitted Proofs

Proof of Proposition 1

Let us first argue that any optimal stopping time is finite with probability 1, with respect to

the prior µi. Suppose, for the purpose of contradiction, that, optimally, player i does not

stop in finite time with probability 1, that is, Pµi (τi <∞)≤ 1−k, for k > 0. Then, as payoffs

are finite, the player’s expected payoff is negative infinity and the player is strictly better

off by stopping immediately, leading to a contradiction regarding the optimality of τi.

Let Vi(µi; ci) be the value function Vi given sampling cost ci.

Lemma 4. Let c′i > ci. Then, Vi(µi; ci)= vi(µi) =⇒ Vi(µi; c′i)= vi(µi).

Proof. Let τi and τ′i denote the optimal stopping times under sampling costs ci and c′i,

respectively. Then,

Vi(µi; c′i)= Eµi

[
vi(µi | X

τ′i
i )− c′i ·τ′i

]
≤ Eµi

[
vi(µi | X

τ′i
i )− ci ·τ′i

]
≤ sup

ti∈Ti

Eµi

[
vi(µi | X ti

i )− ci · ti

]
=Vi(µi; ci).

�

Finally, we obtain a distributional implication on optimal stopping time as sampling costs

vary:

Lemma 5. The optimal stopping time decreases in a first-order stochastic dominance sense

in sampling costs, with respect to both µi and σ−i.

Proof. Let c′i > ci and let τi and τ′i denote the optimal stopping times under sampling costs

ci and c′i, respectively. Then, by Lemma 4, as Vi(µi; ci) = vi(µi) =⇒ Vi(µi; c′i) = vi(µi), we
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have that, for any t ∈N0,

{ω ∈Ω : τi(ω)≤ t}=
{
ω ∈Ω : Vi(µi | X t′

i (ω); ci)= vi(µi | X t′
i (ω)), t′ ≤ t

}
⊆

{
ω ∈Ω : Vi(µi | X t′

i (ω); c′i)= vi(µi | X t′
i (ω)), t′ ≤ t

}
= {

ω ∈Ω : τ′i(ω)≤ t
}
.

The claim follows immediately from the above. �

Proof of Proposition 2

To show that Mi(ai) is convex, let us prove first a useful property of Vi.

Lemma 6. Vi is convex.

Proof. Let σd
i : Xi ∪ {;} → Σi and let Ṽi(ti,σd

i ,µi) := Eµi

[
Eµi

[
ui(σd

i (X ti
i ),σ−i) | X ti

i

]
− ci · ti

]
.

Note that

Ṽi(ti,σd
i ,µi)= Eµi

[
Eµi

[
ui(σd

i (X ti
i ),σ−i) | X ti

i

]
− ci · ti

]
= Eµi

[
ui(σd

i (X ti
i ),σ−i)− ci · ti

]
.

Furthermore, note that Vi(µi)= supti∈Ti
Eµi

[
vi(µi | X ti

i )− ci · ti

]
= supti∈Ti ,σd

i
Ṽi(ti,σd

i ,µi). Con-

sequently, ∀µi,µ′
i ∈∆(Σ−i), λ ∈ [0,1],

Vi(λµi + (1−λ)µ′
i)= sup

ti∈Ti ,σd
i

Ṽi(ti,σd
i ,λµi + (1−λ)µ′

i)

= sup
ti∈Ti ,σd

i

λṼi(ti,σd
i ,µi)+ (1−λ)Ṽi(ti,σd

i ,µ′
i)

≤λ sup
ti∈Ti ,σd

i

Ṽi(ti,σd
i ,µi)+ (1−λ) sup

ti∈Ti ,σd
i

Ṽi(ti,σd
i ,µ′

i)

=λVi(µi)+ (1−λ)Vi(µ′
i).

�

Lemma 7. For any ai ∈ A i, Mi(ai) is convex.
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Proof. That, for ai ∈ A i, Mi(ai) is convex is a direct consequence of Lemma 6. Take

µi,µ′
i ∈ Mi(ai), then Vi(µi) = vi(µi) = Eµi [ui(ai,σ−i)] and Vi(µ′

i) = vi(µ′
i) = Eµ′i

[ui(ai,σ−i)],

then ∀λ ∈ [0,1], by Lemma 6, we have that Vi(λµi + (1−λ)µ′
i) ≤ λEµi [ui(ai,σ−i)]+ (1−λ) =

Eµ′i
[ui(ai,σ−i)]= Eλµi+(1−λ)µ′i

[ui(ai,σ−i)]. Moreover, as, ∀a′
i ∈ A i, Eµi [ui(ai,σ−i)]≥ Eµi [ui(a′

i,σ−i)]

and Eµ′i [ui(ai,σ−i)]≥ Eµ′i [ui(a′
i,σ−i)], by linearity, vi(λµi+(1−λ)µ′

i)= Eλµi+(1−λ)µ′i
[ui(ai,σ−i)]≥

Eµi [ui(a′
i,σ−i)]. Hence, Vi(λµi+(1−λ)µ′

i)≤ vi(λµi+(1−λ)µ′
i)= Eλµi+(1−λ)µ′i

[ui(ai,σ−i)], which

implies that Mi(ai) is convex. �

Now denote Vi(µi;ui) the value function Vi given utility function ui : A →R.

The first claim in Proposition 2 follows from the next couple of lemmata.

Lemma 8. Let g :Σ−i →R+ and let u′
i(ãi,σ−i)= ui(ãi,σ−i)+1ãi=ai · g(σ−i). Then,

(i) If Vi(µi;ui)= Eµi [ui(ai,σ−i)], then Vi(µi;u′
i)= Eµi [u

′
i(ai,σ−i)];

(ii) If Vi(µi;u′
i)= Eµi [u

′
i(ãi,σ−i)] and ãi , ai, then Vi(µi;ui)= Eµi [ui(ãi,σ−i)].

Proof.

(i) Suppose not. Then ∃τ′i ∈Ti such that

Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i)+1σi(ai)=1 g(σ−i) | X

τ′i
i

]
−τ′i · ci

]
> Eµi [ui(ai,σ−i)]+Eµi [g(σ−i)] .

Meanwhile, we have

Vi(µi;ui)= Eµi [ui(ai,σ−i)]

≥ sup
ti∈Ti

Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i) | X ti

i

]
− ti · ci

]
≥ Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i) | X

τ′i
i

]
−τ′i · ci

]
.
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But a contradiction then arises:

Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i)+1σi(ai)=1 g(σ−i) | X

τ′i
i

]
−τ′i · ci

]
> Eµi [ui(ak,σ−i)]+Eµi [g(σ−i)]

≥ Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i) | X

τ′i
i

]
−τ′i · ci,

]
+Eµi [g(σ−i)]

=⇒ Eµi [g(σ−i)]< Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i)+1σi(ai)=1 g(σ−i) | X

τ′i
i

]
−max
σi∈Σi

Eµi

[
ui(σi,σ−i) | X

τ′i
i

]]
≤ Eµi

[
Eµi

[
g(σ−i) | X

τ′i
i

]]
≤ Eµi [g(σ−i)] ,

a contradiction.

(ii) Suppose not. Then, ∃τi ∈Ti such that

Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i)+1σi(ai)=1 g(σ−i) | Xτi

i

]−τi · ci

]
≤ sup

ti∈Ti

Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i)+1σi(ai)=1 g(σ−i) | X ti

i

]
− ti · ci

]
=Vi(µi;u′

i)= Eµi

[
u′

i(ãi,σ−i)
]= Eµi [ui(ãi,σ−i)]

< Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i) | Xτi

i

]−τi · ci

]
=⇒ 0< Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i) | Xτi

i

]−τi · ci

]
−Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i)+1σi(ai)=1 g(σ−i) | Xτi

i

]−τi · ci

]
= Eµi

[
max
σi∈Σi

Eµi

[
ui(σi,σ−i) | Xτi

i

]−max
σi∈Σi

Eµi

[
ui(σi,σ−i)+1σi(ai)=1 g(σ−i) | Xτi

i

]]
≤ 0,

a contradiction.

�

Hence, we have that, ∀ai ∈ A i, if ui ≥ai u′
i, then Mi(ai;ui)⊆ Mi(ai;u′

i).

The second claim in part (i) of the proposition is that Mi(ai) decreases with respect to set

inclusion in the utility function ui with respect to ≥a′
i
, for a′

i , ai. This follows from the
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fact that Vi(µi;u′
i)≥Vi(µi;ui) and that, for a′

i ∈ A i \{ai},

Mi(a′
i;ui)=

{
µi ∈∆(Σ−i) | Vi(µi;ui)= Eµi

[
ui(a′

i,σ−i)
]}

⊇ {
µi ∈∆(Σ−i) | Vi(µi;u′

i)= Eµi

[
ui(a′

i,σ−i)
]}

= Mi(a′
i;u

′
i).

Finally, the second part of the proposition is an immediate consequence of the results

above. To see this, let u′
i ≥ai ui and denote τ′i and τi the earliest optimal stopping time

associated with u′
i and ui respectively. Note that, ∀t ∈N0,

{
τi ≤ t ∩ (µi | Xτi

i ) ∈ Mi(ai;ui)
}

=
ω ∈Ω : ∃`≤ t, X`

i (ω)= x`i such that
Vi(µi | xr

i ;ui)= Eµi

[
ui(ai, s−i) | xr

i
]

and

Vi(µi | xr
i ;ui)>maxa′

i∈A i Eµi

[
ui(a′

i, s−i) | xr
i
]
, r ≤ `−1


⊆

ω ∈Ω : ∃`≤ t, X`
i (ω)= x`i such that

Vi(µi | xr
i ;u

′
i)= Eµi

[
u′

i(ai, s−i) | xr
i
]

and

Vi(µi | xr
i ;u

′
i)>maxa′

i∈A i Eµi

[
u′

i(a
′
i, s−i) | xr

i
]
, r ≤ `−1


=

{
τ′i ≤ t ∩ (µi | X

τ′i
i ) ∈ Mi(ai;u′

i)
}

,

where subset inclusion is a consequence of Lemma 8 given that stopping the earliest at x`i
under ui and choosing ai implies that under u′

i, i either also stops at xr
i and chooses ai

or has stopped earlier and has chosen ai — in which case the probability of choosing ai

cannot be smaller — or has stopped earlier, say at x`−h
i , and chosen a′

i ∈ A i \{ai}. But if the

latter holds, then by Lemma 8, i would also have stopped earlier at x`−h
i and have chosen

a′
i, a contradiction.

It then follows that

Pµi

(
τ′i ≤ t ∩ (µi | X

τ′i
i ) ∈ Mi(ai;u′

i)
)
≥Pµi

(
τi ≤ t ∩ (µi | Xτi

i ) ∈ Mi(ai;ui)
)
,

and ∀σ−i ∈Σ−i,

Pσ−i

(
τ′i ≤ t ∩ (µi | X

τ′i
i ) ∈ Mi(ai;u′

i)
)
≥Pσ−i

(
τi ≤ t ∩ (µi | Xτi

i ) ∈ Mi(ai;ui)
)
.

The argument is analogous for action a′
i ∈ A i \{ai}.
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Proof of Corollary 1

Let Vi(µi; ci) be the value function Vi given sampling cost ci and Mi(ai; ci) the corre-

sponding set of stopping beliefs at which ai is optimal. Take c′i > ci. As, from Lemma

4, Vi(µi; ci) = vi(µi) = Eµi [ui(ai,σ−i)] =⇒ Vi(µi; c′i) = vi(µi) = Eµi [ui(ai,σ−i)], the claim fol-

lows immediately.

Proof of Proposition 3

I will start by proving the result for the case where µi allows for correlation.

Let X
t
i ∈Σ−i denote the empirical mean of sample path X t

i , that is, 1
t
∑t
`=1 X i,`. I will use

Bε(s−i) to denote the ε-neighborhood around s−i ∈ Σ−i in the sup-norm, that is Bε(s−i) :={
s′−i ∈Σ−i

∣∣ ‖s−i − s′−i‖∞ ≤ ε}.
Noting that, as Σ−i is compact, a prior having full support is equivalent to Diaconis and

Freedman’s (1990) condition of φ-positivity, we have, from their Theorem (4.2) and Corol-

lary (2.6) that for all full-support µi ∈ ∆(Σ−i), for any ε < 1/(2 · |A−i|), any t ∈ N and any

X
t
i ∈Σ−i,

µi

(
Bε(X

t
i) | X t

i

)
1−µ

(
Bε(X

t
i) | X t

i

) ≥ψ(ε) ·exp
(
t ·2ε2 ·λ)

,

where ψ(ε)> 0, ∀ε> 0, and λ is a fixed and strictly positive scalar. For small ε> 0, one then

has that

µi

(
Bε(X

t
i) | X t

i

)
≥ ψ(ε) ·exp

(
t ·2ε2 ·λ)

1+ψ(ε) ·exp
(
t ·2ε2 ·λ) =: h(ε, t)

=⇒ h(ε, t) · (X t
i +ε · 1)+ (1−h(ε, t)) · 1 ≥ Eµi |X t

i
[σ−i] ≥ h(ε, t) · (X t

i −ε · 1),

where 1 denotes a vector of 1s.
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Then, for any t ∈N, any sample paths X t
i and any ε> 0 sufficiently small,

‖Eµi |X t
i
[σ−i]− X

t
i‖∞ = max

a−i∈A−i

∣∣∣Eµi |X t
i
[σ−i(a−i)]− X

t
i(a−i)

∣∣∣
≤ max

a−i∈A−i
max

{
h(ε, t)(X

t
i(a−i)+ε)+ (1−h(ε, t))− X

t
i(a−i) , X

t
i(a−i)−h(ε, t) · (X t

i −ε)
}

≤ max
a−i∈A−i

max
{
h(ε, t) ·ε+ (1−h(ε, t)) · X

t
i(a−i) , h(ε, t) ·ε+ (1−h(ε, t)) · X

t
i(a−i)

}
≤ (h(ε, t) ·ε+ (1−h(ε, t))) .

Moreover, for any sample paths such that X t
i , X t+1

i such that X t
i,` = X t+1

i,` for `= 1, ..., t, it is

immediate that ‖X
t+1
i − X

t
i‖∞ ≤ 2/(t+1) and, therefore, we have that

0≤ Eµi |X t
i

[
vi(µi | X t+1

i )−vi(µi | X t
i )

]
= Eµi |X t

i

[
max
σi∈Σi

Eµi |X t+1
i

[ui(σi,σ−i)]−max
σi∈Σi

Eµi |X t
i
[ui(σi,σ−i)]

]
= Eµi |X t

i

[
max
σi∈Σi

Eµi |X t+1
i

[ui(σi,σ−i)]−Eµi |X t
i
[ui(bi(µi | X t+1

i ),σ−i)]

+Eµi |X t
i
[ui(bi(µi | X t+1

i ),σ−i)]−max
σi∈Σi

Eµi |X t
i
[ui(σi,σ−i)]

]
≤ Eµi |X t

i

[
max
σi∈Σi

Eµi |X t+1
i

[ui(σi,σ−i)]−Eµi |X t
i
[ui(bi(µi | X t+1

i ),σ−i)]
]

= Eµi |X t
i

[
ui

(
bi(µi | X t+1

i ),Eµi |X t+1
i

[σ−i]
)
−ui

(
bi(µi | X t+1

i ),Eµi |X t
i
[σ−i]

)]
= Eµi |X t

i

[ ∑
a−i∈A−i

(
Eµi |X t+1

i
[σ−i](a−i)−Eµi |X t

i
[σ−i](a−i)

)
·ui(bi(µi | X t+1

i ),a−i)

]

≤ Eµi |X t
i

[ ∑
a−i∈A−i

∣∣∣Eµi |X t+1
i

[σ−i](a−i)−Eµi |X t
i
[σ−i](a−i)

∣∣∣ ·max
a∈A

|ui(a)|
]

=max
a∈A

|ui(a)| ·Eµi |X t
i

[∥∥∥Eµi |X t+1
i

[σ−i]−Eµi |X t
i
[σ−i]

∥∥∥
1

]
≤max

a∈A
|ui(a)| ·Eµi |X t

i

[∥∥∥Eµi |X t+1
i

[σ−i]−Eµi |X t
i
[σ−i]

∥∥∥∞

]
≤max

a∈A
|ui(a)| ·Eµi |X t

i

[∥∥∥Eµi |X t+1
i

[σ−i]− X
t+1
i

∥∥∥∞+
∥∥∥Eµi |X t

i
[σ−i]− X

t
i

∥∥∥∞+
∥∥∥X

t+1
i − X

t
i

∥∥∥∞

]
≤max

a∈A
|ui(a)| ·

[
(h(ε, t)+h(ε, t+1)) ·ε+ (1−h(ε, t))+ (1−h(ε, t+1))+ 2

t+1

]
≤ 2max

a∈A
|ui(a)| ·

[
h(ε, t+1) ·ε+ (1−h(ε, t))+ 1

t+1

]
,
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where the first inequality follows from the fact that the value of additional information is

always weakly positive, the second inequality from optimality and linearity of ui is used in

the ensuing equality and the last inequality from the fact that h(ε, t) is strictly increasing

in t. As limt→∞ h(ε, t) = 1, we have that 2maxa∈A |ui(a)| · [h(ε, t+1) ·ε+ (1−h(ε, t))+ 1
t+1

] →
2maxa∈A |ui(a)| · ε, monotonically, as t →∞. As this holds for any ε> 0 and for any sample

path, it holds for ε≤ ci/(2maxa∈A |ui(a)|). Thus, ∃Ti ∈N such that ∀t ≥ Ti, Eµi |X t
i

[
vi(µi | X t+1

i )
]−

ci < vi(µi | X t
i ), ∀X t

i , X t+1
i ∈Xi such that X t

i,` = X t+1
i,` for `= 1, ..., t.

I will now show that this implies that Pσ−i (τi ≤ Ti), ∀σ−i ∈ Σ−i. First, suppose that there

is a sample path xt
i at which i stops, i.e. ∃xt

i ∈Xi(ui,µi, ci), t ≥ Ti +1. Then,

vi(µi | xt−1
i )<Vi(µi | xt−1

i )− ci = Eµi |xt−1
i

[vi(µi | xt−1
i , X i,t]− ci,

a contradiction. Hence, ∀t ≥ Ti +1, Øxt
i ∈Xi(ui,µi, ci).

Suppose that for some σ−i ∈ Σ−i, Pσ−i (τi ≤ Ti) < 1. Then, ∃xt
i ∈ Xi such that t > Ti and

Pσ−i (X
t
i = xt

i) > 0. As µi( int (Σ−i)) > 0, then Pµi (X
t
i = xt

i) > 0, which then implies that 0 <
Pµi (X i ∉ Xi(ui,µi, ci) ≤ Pµi (¬τi < ∞). As, by Proposition 1, Pµi (τi < ∞) = 1, we reach a

contradiction.

To see that the same argument holds when the prior µi does not allow for correlation,

note that, for any a,b, c,d ∈ [0,1], |ab− cd| = |ab− cb+ cb− cd| ≤ |a− c|b+|b−d|c ≤ |a− c|+
|b−d| and thus,

Eµi |X t
i

[ ∑
a−i∈A−i

∣∣∣Eµi |X t+1
i

[σ−i](a−i)−Eµi |X t+1
i

[σ−i](a−i)
∣∣∣ ·max

a∈A
|ui(a)|

]

=Eµi |X t
i

[ ∑
a−i∈A−i

∣∣∣∣∣ ∏
j∈−i

Eµi j |X t+1
i

[σ j](a j)−
∏
j∈−i

Eµi j |X t
i
[σ j](a j)

∣∣∣∣∣ ·max
a∈A

|ui(a)|
]

≤Eµi |X t
i

[ ∑
a−i∈A−i

∑
j∈−i

∣∣∣Eµi j |X t+1
i

[σ j](a j)−Eµi j |X t
i
[σ j](a j)

∣∣∣ ·max
a∈A

|ui(a)|
]

≤|A−i| · (|I|−1)Eµi |X t
i

[
max
j∈−i

∥∥∥Eµi j |X t+1
i

[σ j]−Eµi j |X t
i
[σ j]

∥∥∥∞ ·max
a∈A

|ui(a)|
]

≤max
a∈A

|ui(a)| · |A−i| · (|I|−1)·

Eµi |X t
i

[
max
j∈−i

(∥∥∥Eµi j |X t
i
[σ j]− X

j,t
i

∥∥∥∞+
∥∥∥Eµi j |X t+1

i
[σ j]− X

j,t+1
i

∥∥∥∞+
∥∥∥X

j,t+1
i − X

j,t
i

∥∥∥∞

)]
,
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where X
j,t
i = 1

t
∑t
`=1 X j,t

i,` denoting the empirical mean of the observations pertaining to

player j, with X j,t
i,` denoting the j-th element — corresponding to player j —, of the `-th

observation of the sample path X t
i . As µi j has full support on Σ j, we have, by the same

arguments, that µi j accumulates around the empirical mean of observations pertaining

to player j, uniformly across all sample realizations of length t. The remaining steps to

complete the proof for when µi does not allow for correlation are therefore similar to

before.

Proof of Theorem 1

For every player i ∈ I, fix a selection of optimal choices bi :∆(Σ−i) →Σi. By Proposition 3,

Xi(ui,µi, ci) is finite and, by definition (2), f i — the induced expected gameplay of player

i as a function of σ−i and given bi — is continuous in (σ j) j∈−i with respect to the Lp-norm,

p ≥ 1. Let f : Σ→ Σ, where f (σ) = ( f i(σ−i))i∈I . Hence, by Brouwer’s fixed-point theorem,

there is σ ∈Σ such that σ= f (σ).

Proof of Theorem 2

Let σ̄ denote the limit of σt. Then,

0= lim
n→∞‖σn − σ̄‖∞ =

∥∥∥ lim
n→∞σn − σ̄

∥∥∥
∞
=

∥∥∥∥∥ lim
n→∞

1
n+1

(
σ0 +

n−1∑
`=0

f (σ`)

)
− σ̄

∥∥∥∥∥∞

=
∥∥∥∥∥ lim

n→∞
1

n+1

n−1∑
`=0

f (σ`)− σ̄
∥∥∥∥∥∞

.

As for any i ∈ I, f i is a polynomial, it is continuous and then so it f . As σt → σ̄ and f

is continuous, then f (σt) → f (σ̄). Consequently, the Cesàro mean Ct := 1
t+1

∑t−1
`=0 f (σ`) also

converges to f (σ̄) and therefore 0= ‖ f (σ̄)− σ̄‖∞ =⇒ f (σ̄)= σ̄.

Suppose now that σn =α·σn−1+(1−α)· f (σn−1), α ∈ (0,1). Then, as σn → σ̄ =⇒ f (σn)→ f (σ̄)

and as for any fixed ` ∈ N0, αn−1−` · f (σ`) → 0, we have σn = αn ·σ0 + (1−α) ·∑n−1
`=0 α

n−1−` ·
f (σ`)→ f (σ̄) =⇒ σ̄= f (σ̄).

As mentioned, the result also holds for finite populations. Let that the maximum of

samples any agent in any role takes is bounded above by T. Suppose that, change the

sampling process such that players cannot sample more than the available observations
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— this can be accommodated by having a period-dependent sampling cost that, for every

period n < T, makes the cost of the n-th sample infinity. Alternatively, start off with T

observations, as in fictitious play. For each period n, let the realized actions be denoted

by an. Let σn = 1
n+1 · a0 + 1

n+1 ·∑n−1
`=0 a` and, for simplicity, assume that sampling is with

replacement, so that an ∼ f (σn−1). Then, σn → σ̄ implies that f (σn) → f (σ̄) and thus an

converges in distribution. As players will sample at most T observations, sampling with

and without replacement is asymptotically equivalent, although the dynamics will differ.

Proof of Proposition 4

To ease notation, I will denote σi as the probability that player i = 1,2 plays strategy s1.

By manner of a continuous-time approximation as in (Fudenberg and Levine 1998), the

dynamic system can be written as
(
σ̇i = f i(σ j)−σi

)
, i, j = 1,2, i , j. The Jacobian of the

dynamic system is given by

 −1 f ′1(σ2)

f ′2(σ1) −1



and its eigenvalues are given by λ = −1±
√

f ′1(σ2) f ′2(σ1). As any game with a unique

Nash equilibrium that is fully mixed implies that it must be a asymmetric matching pen-

nies game. Thus, by claim (ii) in Theorem 4, f ′1 f ′2 ≤ 0 and, by Proposition 8, there is a

unique sequential sampling equilibrium equilibrium. Therefore, as the real parts of the

eigenvalues of the Jacobian matrix are strictly negative, the unique sequential sampling

equilibrium is locally stable. Moreover, by the Jacobian conjecture on global asymptotic

stability — proved to hold on the plane (Chen et al. 2001) —, the unique equilibrium is

globally asymptotically stable as the eigenvalues of the Jacobian are always strictly for any

(σ1,σ2) ∈ [0,1]2.

If the game has a unique Nash equilibrium and is not fully mixed, then one of the players

must have a weakly dominant strategy. To see why the claim holds then, suppose, without

loss, that for player 1 it is weakly dominant to play σ1 = 1. Then, for any full-support

prior, f1(σ2,n)= 1, ∀n = 1,2, ..., =⇒ σ1,n → 1 and, consequently, f2(σ1,n)→ f2(1), resulting in

σ2,n → f2(1).
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Proof of Lemma 1

I will start by showing an equivalence between the optimal stopping problem players face

and the regret minimization problem which extends Fudenberg et al.’s (2018) proposition

2 holds to this environment.

Let κ := maxai∈A i ui(ai, s−i) denote the utility that player i would experience were the

player to know that the opponents’ gameplay was s−i and let

Vi(ti,µi;ui, ci) := Eµi

[
vi(µi|X ti

i )− ci · ti

]
.

We then have the following equivalence:

Lemma 9. ∀ti ∈Ti, −Ri(ti;ui,µi, ci)−Eµi [ci · ti]=Vi(ti,µi;ui, ci)−Eµi [κ].

Proof. First, note that, for any selection of best-responses bi,

Eµi

[
vi(µi|X ti

i )
]
= Eµi

[
max
σi∈Σi

Eµi

[
ui(σi, s−i) | X ti

i

]]
= Eµi

[
Eµi

[
ui

(
bi

(
µi | X ti

i

)
, s−i

)
| X ti

i

]]
= Eµi

[
ui

(
bi

(
µi | X ti

i

)
, s−i

)]
.

Then, it immediately follows that

Vi(ti,µi;ui, ci)−Eµi [κ]

=−Ri(ti;ui,µi, ci)−Eµi [ci · ti].

�

The claim in Lemma 1 follows immediately as a corollary of Lemma 9, given that

τi(ci) ∈ argmax
ti∈Ti

Vi(ti,µi;ui, ci)

= argmax
ti∈Ti

Vi(ti,µi;ui, ci)−Eµi [κ]

= argmin
ti∈Ti

Ri(ti;ui,µi, ci)+Eµi [ci · ti].
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Proof of Lemma 2

Let ti,n ∈Ti be a stopping time according to which i stops after sampling
⌊
1/pci,n

⌋
obser-

vations, regardless of their realization. Let X
t
i denote the empirical average, 1

t
∑t
`=1 X i,`.

Then, conditional on σ−i being the true distribution, we have that ti,n →∞ and Eµi [s−i |
X ti,n

i ] a.s.→ σ−i as n →∞ given that, ‖Eµi [s−i | X ti,n
i ]− X

ti,n
i ‖∞ → 0 as shown in Proposition 3

and ‖X
ti,n
i −σ−i‖∞ a.s.→ 0 by the strong law of large numbers. Then, letting u∗

i (Eµi [s−i | X t
i ]) :=

maxσi∈Σi ui(σi,Eµi [s−i | X t
i ])=maxσi∈Σi Eµi [ui(σi, s−i) | X t

i ], we have that u∗
i is continuous in

Eµi [s−i | X t
i ] by Berge’s theorem of the maximum and, thus, by the continuous mapping

theorem, maxσi∈Σi Eµi [ui(σi, s−i) | X ti,n
i ] a.s.→ u∗

i (σ−i). Consequently, we find that

lim
n→∞Eµi

[
vi(µi | X ti,n

i )− ci,n · ti,n

]
= lim

n→∞Eµi

[
u∗

i (Eµi [s−i | X ti,n
i ])

]
− lim

n→∞ ci,n ·
⌊√

1/ci,n

⌋
= Eµi

[
Eµi

[
lim

n→∞u∗
i (Eµi [s−i | X ti,n

i ]) |σ−i

]]
= 0,

where the before last equality follows from the Lebesgue dominated convergence theorem.

Finally, we have that

0≤ lim
n→∞Ri(τi,n;ui,µi, ci,n)= lim

n→∞ inf
ti∈Ti

Ri(ti;ui,µi, ci,n)≤ lim
n→∞Ri(ti,n;ui,µi, ci,n)= 0,

proving the claim.

Proof of Theorem 3

Take any limit point σ∗ and let {σm}m be a subsequence of {σn}n that converges to σ∗.

Define

r i(σi,σ−i) := max
σ′

i∈Σi
ui(σ′

i,σ−i)−ui(σi,σ−i).

Suppose that σ∗ is not a Nash equilibrium. Then, ∃i ∈ I such that r i(σ∗
i ,σ∗

−i) ≥ k > 0. As r i

is continuous in (σi,σ−i), it is continuous in σ ∈Σ and, therefore, as σm →σ∗, ∃M ∈N such

that ∀m ≥ M, r i(σi,m,σ−i,m)≥ k/2. Recall that σi,m = f i(σ−i,m), by definition of a sequential

sampling equilibrium and let r̄ i(σ−i) := r i( f i(σ−i),σ−i). As f i is continuous, so is r̄ i and
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thus, ∃δ> 0 such that ∀s−i ∈ Bδ(σ∗
−i), r̄ i(s−i)≥ k/4. But then, as ∃M′ ∈N such that ∀m ≥ M′,

‖σ−i,m−σ∗
−i‖∞ < δ/2, ∀s−i ∈ Bδ/2(σ−i,m), s−i ∈ Bδ(σ∗

−i) and r̄ i(s−i)≥ k/4> 0. This implies that

∀m ≥ M′,

Ri(τi,m;ui,µi, ci,m)≥µi(Bδ/2(σ−i,m)) ·k/2≥φi(δ/2) ·k/4> 0,

where φi(ε) := infσ−i∈Σ−i µi(Bε(σ−i)) and, as µi has full support, ∀ε > 0, φi(ε) > 0. Conse-

quently, limm→∞ Ri(τi,m;ui,µi, ci,m)≥ k/4> 0, what contradicts Lemma 2.

Proof of Proposition 5

Claim (i) follows from the observation that if µi has full support and ai is weakly domi-

nated by σi ∈ Σi, ui(ai, s−i) ≤ ui(σi, s−i) ∀s−i ∈ Σ−i and for some s′−i ∈ Σ−i such inequality

is strict and ui(ai, s−i)− ui(σi, s−i) < −δ, for some δ > 0. Hence, it will remain strict in a

neighborhood εi around s′−i ∈Σ−i and, therefore,

Eµi [ui(σi, s−i) | xt
i]−Eµi [ui(ai, s−i) | xt

i]≥µi(Bε(s′−i) | xt
i)δ.

As µi has full support, µi(Bε(s′−i)) ≥ infs−i∈Σ−i µi(Bε(s′−i)) =:φi(ε) > 0. Take s′′−i ∈ Bε(s′−i) such

that s′′−i(a−i)≥ ε/(2 · |A−i|) ∀a−i ∈ A−i and note that

µi(Bε(s′−i) | xt
i)≥µi(Bε/(4·|A−i |)(s

′′
−i) | xt

i)≥
∫

Bε/(4·|A−i |)(s
′′
−i)

t∏
`=1

s−i(xi,`)µi(ds−i)

≥
(

ε

4 · |A−i|
)t
µi(Bε/4(s′′−i))≥

(
ε

4 · |A−i|
)t
·φi(ε/(4 · |A−i|))> 0.

Thus, ∀xt
i ∈Xi,

Eµi [ui(σi, s−i) | xt
i]−Eµi [ui(ai, s−i) | xt

i]> 0,

and, consequently, bi(µi | xi)(ai) = 0 ∀xi ∈ Xi which implies that for any sampling cost ci

and full-support prior µi and opponents’ gameplay σ−i ∈Σ−i, f i(σ−i)(ai)= 0. Hence, ai will

never be chosen with positive probability at a sequential sampling equilibrium and thus,

no Nash equilibrium involving weakly dominated actions is reachable with full-support

priors.
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The only if part of claim (ii) follows directly from claim (i). For the if part, we will need

this next lemma:

Lemma 10. (Pearce 1984, Lemma 4; Weinstein 2020, Proposition 2)

For any game Γ, i ∈ I and B ⊆ A i, exactly one of the following is true:

(i) There is a belief s−i ∈ int (Σ−i) such that B ⊆ argmaxai∈A i ui(ai, s−i);

(ii) There is a pair σi ∈Σi, σ′
i ∈∆(B) such that σi weakly dominates σ′

i, where σi,σ′
i can

be selected such that supp (σi)∩ supp (σ′
i)=;.

Let a∗ be such a pure-strategy Nash equilibrium not involving any weakly dominated

actions. For every i ∈ I, and ai ∈ A i, let M∗
i (ai) denote the set of opponents’ gameplay

for which it is optimal for player i to choose action ai. Then, by Lemma 10, for any

i ∈ I, there is σ̃−i ∈ int (Σ−i)∩ M∗
i (a∗

i ). For every i, let µi be a Dirichlet prior on Σ−i

with parameters σ̃−i À 0. Note that, ∀t ∈ N, E[s−i | (a∗
−i)

t] = 1
t+1 σ̃−i + t

t+1δa∗
−i

∈ M∗
i (a∗

i ),

given that {δa∗
i
, σ̃−i} ⊂ M∗

i (a∗
i ) and M∗

i (a∗
i ) is convex, where δa−i is a Dirac measure on

a−i. Let bi(µi | xi)(a∗
i ) = 1 whenever Eµi [s−i | xi] ∈ M∗

i (a∗
i ) for xi ∈ Xi. Then, if σ−i = δa∗

−i
,

Eσ−i [bi(µi | Xτi,n
i )](a∗

i ) = 1, for the optimal stopping time τi,n given ci,n and, consequently,

δa∗ ∈ΣSSE(〈Γ,µ, cn〉) ∀n ∈N.

Proof of Proposition 6

I will start by showing the only if part of the claim in the proposition.

Let M∗
i (ai) denote the set of opponents’ gameplay to which action ai is a best-response.

Suppose, for the purpose of contradiction, that ∃i ∈ I such that, ∀ε> 0, Bε(δa∗
−i

)\M∗
i (a∗

i ), 0,

where δa−i is a Dirac measure on a−i. For all m ∈N, let σ−in ∈ B1/m(δa∗
−i

) \ M∗
i (a∗

i ). Then,

Σ̃∗
i (σ−i,m) := argmaxσi∈∆(A i\{a∗

i }) ui(σi,σ−i,m) ⊆ argmaxσi∈∆(A i) ui(σi,σ−i,m) and, by Berge’s

theorem of the maximum, Σ̃∗
i (s−i) is upper-hemicontinuous and compact-valued and let

σi,m ∈ Σ̃∗
i (σ−i,m). Thus, there is a converging subsequence (σk)k ⊆ (σi,m)m and let σ̃i :=

limk→∞σi,k. As ui(σi,k,σ−i,k) ≥ ui(a∗
i ,σ−i,k), σi,k → σ̃i, and σ−i,k → δa∗

−i
∈ M∗

i (a∗
i ), then

ui(σ̃i,a∗
−i) = ui(a∗

i ,a∗
−i). Consequently, ∃k ∈ N such that supp (σ̃i)∩ supp (σ̃i,k) , ;. Let

a′
i ∈ supp (σ̃i)∩ supp (σ̃i,k). Then, ui(a′

i,σ−i,k) = ui(σi,k,σ−i,k) ≥ ui(a∗
i ,σ−i,k)+δ, for some

δ> 0. As such, ∃ε′ > 0 such that ∀s−i ∈ Bε′(σ−i,k), ui(a′
i, s−i)≥ ui(a∗

i , s−i)+δ/2 and Bε′(σ−i,k)∩
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int (Σ−i) \ M∗
i (a∗

i ) , ;. Let µi be given by a Dirichlet distribution with parameters s′−i ∈
Bε′(σ−i,k)∩ int (Σ−i)\ M∗

i (a∗
i ). Then, ∀t ∈N, Eµi [ui(a′

i, s−i) | (a∗
−i)

t]−Eµi [ui(a∗
i , s−i) | (a∗

−i)
t] =

1
t+1δ/2, which then implies that Eµi [s−i | (a∗

−i)
t] ∉ M∗

i (a∗
i ). Hence, ∀ci > 0, if σ−i = δa∗

−i
,

Eσ−i [bi(µi | Xτi
i )](a∗

i )= 0.

To show the if part of the claim, we need the following lemma, which proves that, when-

ever there are two undominated actions that do not give identical payoffs, a player’s earli-

est stopping time grows unboundedly as the sampling costs vanish.

Lemma 11. Suppose that player i has no weakly better action, that is, Øai ∈ A i such that

ui(ai,a−i) ≥ maxa′
i∈A i ui(a′

i,a−i). Let {ci,n}n∈N ⊂ R++ be a sequence of sampling costs such

that ci,n → 0 and let τi,n denote the associated optimal stopping time. Then, if player i’s

prior has full support, for any distribution of samples, the earliest stopping time diverges

σ−i, that is, inf supp (τi,n)→∞, ∀σ−i ∈Σ−i.

Proof. If there is more than one undominated action, for every action ai ∈ A i, ∃a′
i ∈ A i and

s̃−i ∈ Σ−i such that ui(a′
i, s̃−i) > ui(ai, s̃−i) and thus, for every action ai there are εi,δi > 0

such that ∀s′′−i ∈ Bεi (s̃−i)⊆Σ−i \ M∗
i (ai),

max
a′′

i ∈A i
ui(a′′

i , s′′−i)−ui(ai, s′′−i)≥ ui(a′
i, s

′′
−i)−ui(ai, s′′−i)≥ δi > 0.

As the number of actions is finite, there is a (ε,δ) À 0 for which the above conditions are

satisfied by every ai ∈ A i.

Suppose, for the purpose of contradiction, that the is T ∈N such that inf supp (τi,n) ≤ T,

∀n ∈N, for any σ−i ∈Σ−i.

Let us note that for any s̃−i ∈ Σ−i and ε> 0, ∃s′−i ∈ Bε(s̃−i) such that |s̃′−i(a−i)− s̃−i(a−i)| =
ε/(2 · |A−i|) ∀a−i ∈ A−i. As such, we have that Bε/4(s̃′−i) ⊂ Bε(s̃−i) and that ∀s′′−i ∈ Bε/4(s̃′−i),

mina−i∈A−i s′′−i(a−i)≥ ε/(4 · |A−i|).
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This then implies that ∀xt
i ∈Xi,

µi | xt
i(Bε(s̃−i)≥µi | xt

i(Bε/4(s̃′−i))

=
∫

Bε/4(s̃′−i)

∏t
`=1 s−i(xi,`)µi(ds−i)∫

Σ−i

∏t
`=1 s−i(xi,`)µi(ds−i)

≥
∫

Bε/4(s̃′−i)

t∏
`=1

s−i(xi,`)µi(ds−i)

≥
(

ε

4 · |A−i|
)t
φi(ε/4)> 0,

where φ(ε) := infs−i∈Σ−i µi(Bε(s−i)), which is strictly positive for any ε > 0 as µi has full

support.

Then, as inf supp (τi,n) ≤ T, for any n ∈ N, ∃xt
i ∈ Xi with t ≤ T, at which player i stops.

Take any ai ∈ supp bi(µi | xt
i)≥ 1/|A i|. We have that

Ri(τi,n;ui,µi, ci,n)

≥Pµi

(
X t

i = xt
i & bi(µi | xt

i)= ai & s′′−i ∈ Bε(s̃−i)
) ·Eµi

[
max
a′′

i ∈A i
ui(a′′

i , s−i)−ui(ai, s−i) | xt
i, s−i ∈ Bε(s̃−i)

]
≥ bi(µi | xt

i)(ai) ·µi | xt
i(Bε(s̃′−i)) ·δ

≥ 1
|A i|

·
(

ε

4 · |A−i|
)T
φi(ε/4) ·δ> 0.

As this holds, ∀ci,n, then we have that limn→∞ Ri(τi,n;ui,µi, ci,n)≥ k for some k > 0, which

contradicts Lemma 2. �

Note that, for any full-support µi, ∃T < ∞ such that Eµi [s−i | (a∗
−i)

t] ∈ Bε(a−i∗), ∀t ≥ T,

∀i ∈ I. Let I ′ denote the set of players for whom a∗
i is not weakly better than any other

action, i.e. ∃a−i ∈ A−i such that maxai∈A i ui(ai,a−i) > ui(a∗
i ,a−i). As, for any player i

in I ′, there is ε > 0 such that Bε(δa∗
−i

) ⊆ M∗
i (a∗

i ), then, by Lemma 11, ∃c̄ À 0 such that

infi∈I ′ inf supp (τi(c)) ≥ T ∀c ≤ c̄. Hence, letting bi(µi | xi)(a∗
i ) = 1 whenever Eµi [s−i | xi] ∈

M∗
i (a∗

i ) for xi ∈Xi, we have that ∀c ≤ c̄, a∗ ∈ΣSSE(〈Γ,µ, c〉).
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Proof of Theorem 4 and Lemma 3

The proof of the claims in Theorem 4 and Lemma 3 requires us to derive several properties

of the value function Vi and the optimal stopping time for the binary setting.

First, let us show a useful equivalence.

Lemma 12. Let A i = A−i = {0,1} and let ui : A → R such that ui(1,1)− ui(0,1) = δ1 > 0,

ui(0,0)−ui(1,0)= δ0 > 0. Then, τi = τ′i, where τi denotes the optimal stopping time associ-

ated with ui and τ′i that associated with utility function u′
i : A → R such that u′

i(1,1) = δ1,

u′
i(1,0)=−δ0 and u′

i(0,1)= u′
i(0,0)= 0.

Proof.

argmax
ti∈Ti

Eµi

[
vi(µi | X ti

i )− ti · ci

]
= argmax

ti∈Ti
Eµi

[
max{ui(1,Eµi [s−i | X ti

i ]),ui(0,Eµi [s−i | X ti
i ])}− ti · ci

]
= argmax

ti∈Ti
Eµi

[
max{ui(1,Eµi [s−i | X ti

i ])−ui(0,Eµi [s−i | X ti
i ]),0}− ti · ci

]
+Eµi

[
ui(0,Eµi [s−i | X ti

i ])
]

= argmax
ti∈Ti

Eµi

[
max{Eµi [s−i | X ti

i ]δ1 + (1−Eµi [s−i | X ti
i ])δ0,0}− ti · ci

]
+ui(0,Eµi [s−i])

= argmax
ti∈Ti

Eµi

[
max{u′

i(1,Eµi [s−i | X ti
i ]),u′

i(0,Eµi [s−i | X ti
i ])}− ti · ci

]
.

�

Thus, throughout the remainder of the proof, assume without loss that ui(ai,a−i) = ai ·
((δ1 +δ0) ·a−i −δ0).

I will now note the following facts:

Lemma 13.

(i) For any µi ∈M , µi | xi ∈M for any xi ∈ {0,1} and µi | xi = 1≥MLR µi ≥MLR µi | xi = 0.

(ii) For µi,µ′
i ∈M , µi ≥MLR µ

′
i =⇒ µi | xi ≥MLR µ

′
i | xi, for any xi ∈ {0,1}.

Proof. As, when dµi(σ)> 0, for xi ∈ {0,1},

dµi|xi(σ)
dµi(σ)

= σxi (1−σ)1−xi

Eµi [sxi (1− s)1−xi ]
,
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claim (i) follows immediately. For claim (ii), note that

dµi|xi(σ)
dµ′

i|xi(σ)
= dµi(σ)

dµ′
i(σ)

Eµ′i
[sxi (1− s)1−xi ]

Eµi [sxi (1− s)1−xi ]

is increasing in σ for xi ∈ {0,1} as, by assumption, µi ≥MLR µ
′
i. �

Recall the definition of Bi,

Bi(Ṽi)[µi] :=max{vi(µ),Eµi [Ṽi(µi | X i)]− ci}.

In this binary setting, we further have that

Eµi [Ṽi(µi | X i]= Eµi [s]Ṽi(µi | 1)+Eµi [1− s]Ṽi(µi | 0).

Let B(k+1)
i (Ṽi) := Bi(B(k)

i (Ṽi)), for k ∈ N, with B(1)
i ≡ Bi. Note that, for any full-support µi,

given Proposition 3, it must be the case that Vi = B(k)
i (vi), ∀k ≥ Ti +1. This next lemma

characterizes a useful property of Vi:

Lemma 14. Vi is increasing in ≥MLR.

Proof. Let µi,µ′
i ∈M be such that µi ≥MLR µ

′
i. Note that vi(µi)≥ vi(µ′

i). Suppose that ∀k ≤ n,

B(k)
i (vi)[µi]≥ B(k)

i (vi)[µ′
i]. Then,

B(n+1)
i (vi)[µi]=max{vi(µi),Eµi [s]B(n)

i (vi)[µi | 1]+Eµi [1− s]B(n)
i (vi)[µi | 0]− ci}

≥max{vi(µi),Eµ′i [s]B(n)
i (vi)[µi | 1]+Eµ′i [1− s]B(n)

i (vi)[µi | 0]− ci}

≥max{vi(µi),Eµ′i [s]B(n)
i (vi)[µ′

i | 1]+Eµ′i [1− s]B(n)
i (vi)[µ′

i | 0]− ci}

= B(n+1)
i (vi)[µ′

i].

Hence, by induction, Vi(µi)≥Vi(µ′
i). �

It will be useful to introduce some notation. Recall that ui(ai,σ−i) := 1ai=1 ((δ1 +δ0)σ−i −δ0)

and let u′
i(ai,σ) := 1ai=0 ((δ1 +δ0)(1−σ−i)−δ1) and v′i(µi) = maxσi∈Σi Eµi [u

′
i(σi, s−i)], where

s−i ∼µi. Define Wi :∆([0,1])→R be such that Wi(µi)=Vi(µi)−Eµi [ui(1, s−i)].
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Lemma 15. Wi(µi)=maxti∈Ti Eµi [v
′
i(µi | X ti

i )− ti · ci]. Moreover,

argmax
ti∈Ti

Eµi [v
′
i(µi | X ti

i )− ti · ci]= argmax
ti∈Ti

Eµi [vi(µi | X ti
i )− ti · ci].

Proof. By Facts 1 and 2,

argmax
ti∈Ti

Eµi [vi(µi | X ti
i )− ti · ci],;.

Then,

τi ∈argmax
ti∈Ti

Eµi [vi(µi | X ti
i )− ti · ci]

=argmax
ti∈Ti

Eµi [max{(δ1 +δ0)Eµi [s−i | X ti
i ]−δ0 , 0}− ti · ci]

=argmax
ti∈Ti

Eµi [max{0 , (δ1 +δ0)Eµi [1− s−i | X ti
i ]−δ1}− ti · ci]+ (δ1 +δ0)Eµi [Eµi [s−i | X ti

i ]]−δ0

=argmax
ti∈Ti

Eµi [v
′
i(µi | X ti

i )− ti · ci]+ (δ1 +δ0)Eµi [Eµi [s−i | X ti
i ]]+Eµi [ui(1, s−i)]

=argmax
ti∈Ti

Eµi [v
′
i(µi | X ti

i )− ti · ci]+ (δ1 +δ0)Eµi [s−i]

=argmax
ti∈Ti

Eµi [v
′
i(µi | X ti

i )− ti · ci].

The claim then follows immediately. �

It should be easy to see that, analogously to what occurs with Vi, Wi is decreasing in

≥MLR.

Lemma 16. Let µi ∈ M and let xi, x′i ∈ Xi such that
∑
`1xi,`=1 ≥ ∑

`1x′i,`=1 and
∑
`1xi,`=0 ≤∑

`1x′i,`=0. Then, Vi(µi | xi)= 0 =⇒ Vi(µi | x′i)= 0 and Wi(µi | x′i)= 0 =⇒ Wi(µi | xi)= 0.

Proof. By transitivity of ≥MLR, µi | xi ≥MLR µi | x′i. Thus, 0 = Vi(µi | xi) ≥ Vi(µi | x′i) ≥ 0. The

proof for Wi is analogous. �

Let us now prove Lemma 3:

Suppose that player i stops after realization xi, with beliefs µi prior to observing realization

xi, and that ui(1,Eµi [s−i | a])= ui(0,Eµi [s−i | a])= 0. Note that this implies that Vi(µi)> vi(µi)

as otherwise player i would not deem it optimal to acquire this last observation.

Then, Vi(µi | a) = ui(1,Eµi [s−i | a]) = ui(0,Eµi [s−i | a]) = 0 = Wi(µi | a). Then, by Lemma 14,
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(n0,n1)=(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(0,1) (0,2) (0,3)

Figure 8. Grid 1

Note: Each node represents a possible information set when ignoring the order of the observations.
Colored nodes (n0,n1) represent nodes at which the process (Y t)t stops, that is, information sets such
that the sample path xi contains n j j-valued observations and Vi(µi | xi) = vi(µi | xi); at red (blue)
stopping nodes action 0 (1) is optimal.

if a = 1, 0 = Vi(µi | 1) ≥ Vi(µi | 0) ≥ 0 and thus Vi(µi) = vi(µi) = 0 > Eµi [Vi(µi | X i)]− c = −c, a

contradiction.

If instead a = 0, again by monotonicity of Wi with respect to ≥MLR, 0 = Wi(µi | 0) ≥ Wi(µi |
1) ≥ 0, which implies Vi(µi | 1) = vi(µi | 1) = ui(1,Eµi [s−i | 1]) and Vi(µi | 0) = ui(1,Eµi [s−i |
0])= 0. And thus, Vi(µi)= ui(1,Eµi [s−i])> EµiVi(µi | X i)− c, again a contradiction.

Given Lemma 3, claim in Theorem 4(i) immediately follows from Lemma 16.

In order to show monotonicity of Pσ−i

(
bi(µi | Xτi

i )= 1 ∩ τi ≤ t
)

in σ−i ∈ [0,1], I will express

the information accumulation as a stochastic process on a “grid”, i.e. N2
0. Each node, a

point in N2
0, denotes the information acquired by the player, that is, the number of 0-valued

and 1-valued observations, and, thus, given a prior µi, pins down player i’s posterior.

Stopping times characterize stopping sample paths, up to order, and, therefore, correspond

to stopping posterior beliefs.

The structure of the proof is intuitive. First, I characterize properties that these “stopping

nodes” have to satisfy. Then, I show that starting from an arbitrary “continuation node”,

the stopping nodes in the “continuation grid” will share these same properties. Finally, the

proof follows from an induction argument. The algebra, however, is tedious.

To illustrate it, consider Figure 8. If player i has already sampled n0 0-valued observa-

tions and n1 1-valued observations, the player either stops if Vi(µi | xi)= vi(µi | xi), where xi

is a sample path with n j j-valued observations, j = 0,1, or takes another sample. In the lat-
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(2,0)

(0,8)(n0,n1)=(0,0)

(1,0)

(0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

Figure 9. Grid 2

Note: In this grid, the probability that a process higher σ−i may increase of decrease the probability of
stopping conditional after moving to the right. The terminal nodes in this grid violate Condition 3(i)
which is met when the terminal nodes are induced by optimal stopping.

ter case, player i will move to node (n0,n1+1) with probability σ−i and to node (n0+1,n1)

with complementary probability. As from Proposition 3 that the optimal stopping time is

bounded, we know that this stochastic process will eventually get to a node where player

i stops. Moreover, whether the last observation is 0-valued or 1-valued is enough to deter-

mine whether player i takes action 0 or 1 upon stopping.24 Hence, the probability of taking

action 1 corresponds to the probability of the stochastic process stopping after “moving to

the right”, an argument which I formal below and monotonicity just implies that higher

σ−i leads to a greater probability of the stochastic process stopping at this boundary on the

right-hand-side of the grid. While it seems intuitive that increasing the probability that the

process “moves right” at each step should increase the probability that it stops after moving

to the right, this is not generally the case and depends on the structure of the stochastic

process induced by player i’s optimal stopping which must comply with. Figure 9 presents

a counterexample, where the probability of stopping after moving to the right is given by

σ8
−i +2σ−i(1−σ−i), which is strictly decreasing in σ−i ∈ (.521, .737).

To proceed, let us define the process
(
Y t)

t∈N0
such that Y t = (

∑t
`=1 Xτi∧t

i,` ,τi ∧ t−∑t
`=1 Xτi∧t

i,` ).

Then, ∃B0,B1 :N0 →N such that Vi(µi | xi)= vi(µi | xi)= Eµi [ui( j, s−i)] if n j ≥ B j(n1− j), where

n j is the number of j-valued observations in the sample path xi, that is, n j =∑
`1xi,`= j, j =

0,1. To see this, note that as the support of the optimal stopping time τi is bounded above

for any distribution σ−i and as, for any n1− j and any full-support prior, there is a finite

number of j-valued observations such that makes the posterior arbitrarily concentrated

around the degenerate distribution s−i = j, then there is a xi ∈ Xi such that
∑
`1xi,`=1− j =

24To see this, suppose that player i with beliefs µi stops after observing a 1 and takes action 0. Then, by
MLR monotonicity of Vi, it must be that player i would also stop when observing a 0-valued sample and
would also take action 0. But then this last sample has no value for player i as regardless of the realization,
player i will take the same action and, thus, it is strictly better, for any sampling cost ci > 0, to stop at µi.
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n1− j and Vi(µi | xi) = Eµi [ui( j, s−i) | xi]. Moreover, by MLR monotonicity of Wi, ∀x′i such

that
∑
`1x′i,`=0 = n0 and

∑
`1x′i,`=1 ≥ ∑

`1xi,`=1, we have that Vi(µi | xi)−Eµi [ui(1, s−i) | xi] =
Wi(µi | xi)= 0≥Wi(µi | x′i)≥ 0 and Wi(µi | x′i)= 0=Vi(µi | x′i)−Eµi [ui(1, s−i) | x′i], and so player

i stops at x′i as well and takes action 1. Thus, there is a smallest n1 such that
∑
`1xi,`=1 = n1

and
∑
`1xi,`=0 = n0 and which player i stops and takes action 1 upon observing n0 0-valued

samples. Then, B1(n0) = n1. The argument is symmetric for B0. Hence, B0,B1 are well-

defined and B1(n) (B0(n)) corresponds to the blue (red) nodes in Figure 8.

I will now introduce a set of conditions on B0,B1 which are satisfied by stopping points

of the process (Y t)t.

Condition 3. B0,B1 : N0 → N satisfy condition 3 if (i) B0,B1 are non-decreasing; (ii)

∃N0, N1 ∈ N : B j(N1− j − 1) = N j, j ∈ {0,1} and ∀(n0,n1) ¿ (N0, N1), if n j ≥ B j(n1− j), then

n1− j < B1− j(n j), j ∈ {0,1}

Condition 3(i) is satisfied due to MLR monotonicity of the value function Vi. To see this,

suppose that B1(n) > B1(n+1) for some n ∈ N0. Then, let xi, x′i ∈ Xi such that
∑
`1xi,`=0 =

1+∑
`1x′i,`=0 = n+1 and

∑
`1xi,`=1 = ∑

`1x′i,`=1 = B1(n+1) < B1(n). Then, as player i stops

at µi | xi, by MLR monotonicity, the player also stops at µi | x′i. But then, B1(n) cannot

correspond to the smallest number of 1-valued observations at which player i stops after

having also drawn n 0-valued observations, which contradicts the definition of B1. The

argument for B0 is symmetric. Condition 3(ii) follows from the fact that optimal stopping

time is bounded from above and thus there is a latest stopping time in the support of τi.

As I have argued above, the last observation drawn has to determine the action of player

i and thus existence of such N0, N1 is assured. Moreover, as the player never stops at an

posterior at which the player is indifference between the two actions (unless i does not

sample at all), this fact and condition (i) imply that condition (ii) is also met.

Prior to stopping, the process defined above is a Markov chain on N2
0, with the Y t+1 =

Y t + (1− zt, zt) where zt is a random variable drawn from a Bernoulli distribution with

the same parameter for all t. As Lemma 17 shows that whenever B0,B1 determine the

stopping points of such stochastic process satisfy Condition 3, the probability of stopping

at (n,B1(n)) increases in the parameter of the Bernoulli distribution.
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Lemma 17. Suppose B0,B1 satisfy condition 3 and let N0, N1 be such as in condition

3(ii). Let zt be a random variable distributed according to a Bernoulli distribution with

parameter θ ∈ [0,1] and
(
Y t)

t∈N be a stochastic process such that, given Y 0 ∈N2
0,

Y t+1 =


Y t = (Y t

0 ,Y t
1 ) if Y t

0 ≥ B0(Y t
1 ) or Y t

1 ≥ B1(Y t
0 )

Y t + (zt,1− zt) if otherwise.

Then, for any Y 0 ¿ (B0(Y 0
1 ),B1(Y 0

0 )),

(i) P(Y t
1 ≥ B1(Y t

0 ))+P(Y t
0 ≥ B0(Y t

1 ))= 1;

(ii) P(Y t
0 ≥ B0(Y t

1 )) is non-decreasing in θ ∈ [0,1];

(iii) d
dθP(Y t

0 ≥ B0(Y t
1 ))> 0, ∀θ ∈ (0,1).

Proof. For claim (i), note that by condition 3(iii), if Y t
j ≥ B j(Y t

1− j), then Y t
1− j ≥ B1− j(Y t

j ),

which implies that P(Y t
1 ≥ B1(Y t

0 ))+P(Y t
0 ≥ B0(Y t

1 ))≤ 1. Suppose that the inequality is strict.

Then, P(Y t ¿ (B0(Y t
1 ),B1(Y t

0 ))∀t ∈N0) > 0. Let T = N0 +N1 −1−Y 0
0 −Y 0

1 . Then, it must be

that Y T
0 +Y T

1 = T +Y 0
0 +Y 0

1 = N0 +N1 −1 which implies that (a) Y T
0 ≥ N0 and Y T

1 ≤ N1 −1

or (b) Y T
1 ≥ N1 and Y T

0 ≤ N0 − 1. If (a) holds, then Y T
0 ≥ N0 = B0(N1 − 1) ≥ B0(Y T

1 ) by

monotonicity of B j and, therefore, ∀t ≥ T, Y t = Y T , a contradiction. If (b) holds, the

argument is symmetric.

For claim (ii), for (n0,n1) ∈ N2
0 such that (n0,n1) ¿ (N0, N1), let p(n0,n1) = P(Y t

0 ≥ B0(Y t
1 ) |

Y 0 = (n0,n1)). First, note that p(N0 − 1, N1 − 1) = θ. Then, ∀n1 = 0, ..., N1 − 1, and n0 =
0, ..., N0 −1,

p(N0 −n0, N1 −1)=


0 if N1 −1≥ B1(N0 −n0)

θn0 if otherwise

p(N0 −1, N1 −n1)=


1 if N0 −1≥ B0(N1 −n1)

1− (1−θ)n1 if otherwise.

Now, I will show that for every (n0,n1) ∈ N2
0 such that (n0,n1) ≤ (N0 − 1, N1 − 1), p(n0 +

1,n1)≥ p(n0,n1)≥ p(n0,n1+1). First, note that p(N0−2, N1−2)= 0 =⇒ p(N0−2, N1−1)= 0
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and p(N0 − 2, N1 − 2) = 1 =⇒ p(N0 − 1, N1 − 2) = 1. Thus, we have that {1,θ+ (1− θ)θ} 3
p(N0 −1, N1 −2) ≥ p(N0 −2, N1 −2) ≥ p(N0 −2, N1 −1) ∈ {0,θ2}. Suppose that ∀n0,n1 such

that N0−2≥ n0 ≥ M0 and N1−2≥ n1 ≥ M1, p(n0, N1−1)≤ p(n0+1, N1−1) and p(N0−1,n1)≥
p(N0 −1,n1 +1). Then,

p(M0 −1, N1 −1)=


0 if N1 −1≥ B1(M0 −1)

θp(M0, N1 −1) if otherwise

p(N0 −1, M1 −1)=


1 if N0 −1≥ B0(M1 −1)

θ+ (1−θ)p(N0 −1, M1) if otherwise.

and, by induction, ∀(n0,n1) ≤ (N0 −1, N1 −1), p(n0, N1 −1) ≤ p(n0 +1, N1 −1) and p(N0 −
1,n1)≥ p(N0 −1,n1 +1).

Now suppose that (i) ∀n1 : N1−1≥ n1 ≥ M1 ≥ 1, ∀n0 ≤ N0−1, p(n0,n1)≤ p(n0+1,n1) and (ii)

∀n0 : N0−1≥ n0 ≥ M0 ≥ 1, ∀n1 ≤ N1−1, p(n0,n1)≥ p(n0,n1+1) and observe that it holds for

M j = N j−2, j = 0,1. I will show that (a) ∀n0 ≤ N0−1, ∀n1 ≤ M1 −1, p(n0,n1)≤ p(n0+1,n1)

and (b) ∀n0 : N0 −1≥ n0 ≥ M0 −1≥ 1, ∀n1 ≤ N1 −1, p(n0,n1)≥ p(n0,n1 +1).

For all N0 −1≥ n0 ≥ M0 −1 and N1 −1≥ n1 ≥ M1,

p(n0,n1)= θp(n0 +1,n1)+ (1−θ)p(n0,n1 +1)

≤ θp(n0 +2,n1)+ (1−θ)p(n0 +1,n1 +1)

= p(n0 +1,n1)

and for all N0 −1≥ n0 ≥ M0 and N1 −1≥ n1 ≥ M1 −1, j = 0,1,

p(n0,n1)= θp(n0 +1,n1)+ (1−θ)p(n0,n1 +1)

≥ θp(n0 +1,n1 +1)+ (1−θ)p(n0,n1 +2)

≥ p(n0,n1 +1).

In particular, we have that p(M0 −1, M1)≤ p(M0, M1)≤ p(M0, M1 −1). Thus,

p(M0 −1, M1)≤ p(M0 −1, M1 −1)= θp(M0, M1 −1)+ (1−θ)p(M0 −1, M1)≤ p(M0 −1, M1),
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and therefore,

p(M0 −2, M1 −1)= θp(M0 −1, M1 −1)+ (1−θ)p(M0 −2, M1)≤ p(M0 −1, M1 −1)

p(M0 −1, M1 −2)= θp(M0, M1 −2)+ (1−θ)p(M0 −1, M1 −1)≥ p(M0 −1, M1 −1)

and, by the same argument, p(M0 −2, M1 −1)≤ p(M0 −2, M1 −2)≥ p(M0 −1, M1 −2). Then,

by induction, (a) and (b) hold and we further have that for all N0−1≥ n0 and N1−1≥ n1,

p(n0,n1 +1)≤ p(n0,n1)≤ p(n0 +1,n1).

It remains to show that p(n0,n1) is increasing in θ and that d
dθ p(0,0)> 0 for θ ∈ (0,1).

It is straightforward to check that d
dθ p(N0 −1, N1 −1) > 0 and ∀(n0,n1) ≤ (N0 −1, N1 −1),

d
dθ p(N0 −1,n1) ≥ 0 and d

dθ p(n0, N1 −1) ≥ 0. Suppose that ∀(m0,m1) : (M0, M1) ≤ (m0,m1) ≤
(N0 −1, N1 −1) and ∀(n0,n1) ≤ (N0 −1, N1 −1), d

dθ p(m0,n1) ≥ 0 and d
dθ p(n0,m1) ≥ 0. I will

show that d
dθ p(m0 −1,n1)≥ 0 and d

dθ p(n0,m1 −1)≥ 0.

d
dθ

p(m0 −1,n1)= d
dθ

(θp(m0,n1)+ (1−θ)p(m0 −1,n1 +1))

= p(m0,n1)− p(m0 −1,n1 +1)+θ d
dθ

p(m0,n1)+ (1−θ)
d

dθ
p(m0 −1,n1 +1)

= p(m0,n1)− p(m0 −1,n1 +1)+θ d
dθ

p(m0,n1)+

+ (1−θ)(p(m0,n1 +1)− p(m0 −1,n1 +2))+ (1−θ)θ
d

dθ
p(m0,n1 +1)+

+ (1−θ)2 d
dθ

p(m0 −1,n1 +2).

As for any n1 ≤ N1−1, (1) d
dθ p(m0,n1)≥ 0, and (2) p(m0,n1)−p(m0−1,n1+1)≥ 0, and as by

iterating the last term of the expression h = m1−n1 times we get (1−θ)h d
dθ p(m0−1,n1+h)≥

0, we have that d
dθ p(m0 −1,n1)≥ 0.

To see that d
dθ p(0,0) > 0, note that if this is not the case, then d

dθ p(0,0) = 0 which implies
d

dθ p(1,0) = d
dθ p(0,1) = p(1,0)− p(0,1) = 0 and, by induction, 0 = p(B0(0)− 1,0)− p(0,0) =

p(0,B1(0)−1)−p(0,0). Then, if θ ∈ (0,1], 0= p(B0(0)−1,0)−p(0,0)= θ+(1−θ)p(B0(0)−1,1)−
p(0,0) =⇒ p(0,0)= 1 and if θ ∈ [0,1), 0= p(0,B1(0)−1)−p(0,0)= θp(1,B1(0)−1)−p(0,0) =⇒
p(0,0)= 0, and we reach a contradiction. �

Finally, let us note that the probability of stopping before time t and taking action 1,

Pσ−i

(
bi(µi | Xτi

i )= 1 ∩ τi ≤ t
)

corresponds to the probability that Y t = (n,B1(n)) for some
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Figure 10.

n ∈N0. In order to show that Pσ−i

(
bi(µi | Xτi

i )= 1 ∩ τi ≤ t
)

is non-decreasing in σ−i for all

t, I will make use of Lemma 17 by redefining the bounds B0,B1.

To provide some intuition, let us consider Figure 10. In panel 10a, I have represented the

terminal nodes — blue and red — corresponding to the stopping time τi, where upon stop-

ping on a red (blue) node, the player takes action 0 (1). In panel 10b, in order to examine

how the probability that event {bi(µi | Xτi
i )= 1 ∩ τi ≤ 5} realizes depends on σ−i, we change

the number of 0-valued observations that are required to stop and take action 0 having ob-

served two 1-valued observations from B0(2)= 4 to B̃0(2)= 3, with the red terminal node at

(4,2) being replaced by the orange terminal node at (3,2). This way, we keep the process

from ever reaching the blue node at (3,3) while keeping unchanged the probability that

it reaches any other blue node. In panel 10c, I illustrate the modifications to the terminal

nodes that allow us to study how the probability that the event {bi(µi | Xτi
i ) = 1 ∩ τi ≤ 4}

realizes varies with σ−i, by replacing the red terminal nodes with the orange terminal

nodes, that is, by requiring fewer 0-valued observations in order to stop. Note that, under

both transformations, B1 is unchanged and the new implied B̃0, determining the number

of 0-valued observations required to stop, also complies with Condition 3 and so, Lemma

17 applies. The last part of the proof, below, formalizes this argument.

Let T denote the latest stopping time according to τi for any σ−i ∈ (0,1) and NT
j denote the

corresponding number of j-valued samples that player i observed upon stopping at T and

taking action j, j = 0,1. Then, B j(NT
1− j)= N j. For any t < B1(0), Pσ−i

(
bi(µi | Xτi

i )= 1 ∩ τi ≤ t
)=
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0, ∀σ−i ∈ [0,1]. Let BT
j = B j, j = 0,1 and, for any t = B1(0),B1(0)+1, ...,T −1, let (a)

N(Bt
0,Bt

1) :=max

(n0,n1) ∈N2
0

∣∣∣∣ Bt
j(n1− j)= Bt

j(n1− j −1)+1, j = 0,1;

Pσ−i (Y
t = (n0 −1,n1 −1))> 0, σ−i ∈ (0,1)

 ;

(b) Bt
0(n) = min{Bt+1

0 (n),Bt+1
0 (N1(Bt+1

0 ,Bt+1
1 )−1)−1} Bt

1(n) = B1(n). (a) defines the number

of j-valued samples at the latest stopping node according to bounds Bt; (b) redefines the

stopping nodes on the grid. To see that for zn ∼ Bernoulli(σ−i) and, given Y 0 = (0,0),

Y n+1 =


Y n = (Y n

0 ,Y n
1 ) if Y n

0 ≥ Bt
0(Y n

1 ) or Y n
1 ≥ Bt

1(Y n
0 )

Y n + (1− zn, zn) if otherwise

we have Pσ−i

(
bi(µi | Xτi

i )= 1 ∩ τi ≤ t
) = P(

Y n = (n0,Bt
1(n0)), n,n0 ∈N0

)
, note that when t =

T −1, we have that BT−1
0 (N1(BT

0 ,BT
1 )−1)= BT−1

0 (BT−1
1 (N0−1)−1)= BT

0 (N1−1)−1= N0−1.

Consequently,

Pσ−i

(
bi(µi | Xτi

i )= 1 ∩ τi > T −1
)

=P
(
Y n = (N0 −1,BT−1

1 (N0 −1)), n ∈N0

)
=P

(
Y n−1 = (N0 −2,BT−1

1 (N0 −1))
)
·P

(
Y n = (N0 −1, N1 −1) |Y n−1 = (N0 −1,BT−1

1 (N0 −1))
)
+

+P(
Y n−1 = (N0 −1, N1 −1)

) ·P(
Y n = (N0 −1, N1) |Y n−1 = (N0 −1, N1 −1)

)
=P

(
Y n−1 = (N0 −2,BT−1

1 (N0 −1))
)
·0+P(

Y n−1 = (N0 −1, N1 −1)
) ·0

= 0,

given that at Y n−1 = (N0 −2,BT−1
1 (N0 −1)), Y n−1

1 ≥ BT−1
1 (N0 −1) = B1(N0 −1) ≥ B1(N0 −2)

and thus Y n−1 stops yielding P
(
Y n = (N0 −1, N1 −1) |Y n−1 = (N0 −1,BT−1

1 (N0 −1))
)= 0 and

at Y n−1 = (N0−1, N1−1), Y n−1
0 ≥ BT−1

0 (N1−1)=min{BT
0 (N1−1),BT

0 (N1−1)−1}= N0−1 and

therefore the process stops as well. The argument is analogous for other t.

As it is straightforward to check that Bt
0,Bt

1 satisfy Condition 3 by construction, we have

that Lemma 17 applies, which concludes the proof for claim (ii) in Theorem 4.

Finally, claim (iii) in Theorem 4, as mentioned, follows immediately from Proposition 2

and Lemma 3.
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Proof of Proposition 7

Given that the family of Beta distributions is closed under Bayesian updating, for any

measure µi corresponding to a Beta distribution with parameters (t̂ · σ̂−i, t̂ · (1− σ̂−i)) I will

denote it by (σ̂−i, t̂). Let us first establish some properties of Vi when µi is restricted to the

class of Beta distributions that we will need.

Lemma 18. For any t̂ > 0 and any σ̂′
−i, σ̂−i ∈ (0,1) such that σ̂′

−i > σ̂−i, Vi(σ̂′
−i, t̂)≥Vi(σ̂−i, t̂).

Proof. The result follows from the observation that (σ̂′
−i, t̂) ≥MLR (σ̂−i, t̂) and the fact that,

by Lemma 14, Vi is monotone in ≥MLR. �

I will now show that Vi(σ̂−i, t̂) is convex in σ̂−i ∈ (0,1). Note that this does not follow

from convexity of Vi(µi) in µi as the space of Beta distributions is not convex, that is, the

convex combination of parameters of two Beta distributions is not in general equivalent to

the mixture of two Beta distributions with those parameters.

Lemma 19. For any t̂ > 0, Vi(σ̂−i, t̂) is convex in σ̂−i ∈ (0,1).

Proof. Let Ṽi(σ̂−i, t̂) be convex and increasing in σ̂−i ∈ (0,1) for any t̂ > 0. Then, it has

increasing differences in σ̂−i. Consequently, for any 1 > σ̂−i > σ̂′
−i > 0, ∀λ ∈ (0,1), letting

σ̂′′
−i =λσ̂−i + (1−λ)σ̂′

−i, we have that

λ
[
σ̂′′
−iṼi

(
t̂/(t̂+1)σ̂−i +1/(t̂+1) , t̂+1

)+ (1− σ̂′′
−i)Ṽi

(
t̂/(t̂+1)σ̂−i , t̂+1

)]+
+ (1−λ)

[
σ̂′′
−iṼi

(
t̂/(t̂+1)σ̂′

−i +1/(t̂+1) , t̂+1
)+ (1− σ̂′′

−i)Ṽi
(
t̂/(t̂+1)σ̂′

−i , t̂+1
)]

≤λ[
σ̂−iṼi

(
t̂/(t̂+1)σ̂−i +1/(t̂+1) , t̂+1

)+ (1− σ̂−i)Ṽi
(
t̂/(t̂+1)σ̂−i , t̂+1

)]+
+ (1−λ)

[
σ̂′
−iṼi

(
t̂/(t̂+1)σ̂′

−i +1/(t̂+1) , t̂+1
)+ (1− σ̂′

−i)Ṽi
(
t̂/(t̂+1)σ̂′

−i , t̂+1
)]

⇔ 0≥λ(1−λ)
[(

Ṽi
(
t̂/(t̂+1)σ̂−i +1/(t̂+1) , t̂+1

)− Ṽi
(
t̂/(t̂+1)σ̂′

−i +1/(t̂+1) , t̂+1
))−

− (
Ṽi

(
t̂/(t̂+1)σ̂−i , t̂+1

)− Ṽi
(
t̂/(t̂+1)σ̂′

−i , t̂+1
))]

.

Let

Bi(Ṽi)[(σ̂−i, t̂)] :=max{vi(σ̂−i, t̂) , σ̂−iṼi
(
t̂/(t̂+1) · σ̂−i +1/(t̂+1) , t̂+1

)+(1−σ̂−i)Ṽi
(
t̂/(t̂+1) · σ̂−i , t̂+1

)−ci}
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which corresponds to the operator Bi from Section 1 when beliefs are given by Beta distri-

bution. Then,

Bi(Ṽi)[(σ̂′′
−i, t̂)]

=max
{
vi(σ̂′′

−i, t̂) , σ̂′′
−iṼi

(
t̂/(t̂+1) · σ̂′′

−i +1/(t̂+1) , t̂+1
)+ (1− σ̂′′

−i)Ṽi
(
t̂/(t̂+1) · σ̂′′

−i , t̂+1
)− ci

}
≤max

 λ ·vi(σ̂−i, t̂)

+(1−λ) ·vi(σ̂′
−i, t̂)

,
λ

[
σ̂′′
−iṼi

(
t̂/(t̂+1)σ̂−i +1/(t̂+1) , t̂+1

)+ (1− σ̂′′
−i)Ṽi

(
t̂/(t̂+1)σ̂−i , t̂+1

)]+
+(1−λ)

[
σ̂′′
−iṼi

(
t̂/(t̂+1)σ̂′

−i +1/(t̂+1) , t̂+1
)+ (1− σ̂′′

−i)Ṽi
(
t̂/(t̂+1)σ̂′

−i , t̂+1
)]− ci


≤max

 λ ·vi(σ̂−i, t̂)

+(1−λ) ·vi(σ̂′
−i, t̂)

,
λ

[
σ̂−iṼi

(
t̂/(t̂+1)σ̂−i +1/(t̂+1) , t̂+1

)+ (1− σ̂−i)Ṽi
(
t̂/(t̂+1)σ̂−i , t̂+1

)]+
+(1−λ)

[
σ̂′
−iṼi

(
t̂/(t̂+1)σ̂′

−i +1/(t̂+1) , t̂+1
)+ (1− σ̂′

−i)Ṽi
(
t̂/(t̂+1)σ̂′

−i , t̂+1
)]− ci


≤λ ·max

{
vi(σ̂−i, t̂) , σ̂−iṼi

(
t̂/(t̂+1) · σ̂−i +1/(t̂+1) , t̂+1

)+ (1− σ̂−i)Ṽi
(
t̂/(t̂+1) · σ̂−i , t̂+1

)− ci
}+

+ (1−λ) ·max
{
vi(σ̂′

−i, t̂) , σ̂′
−iṼi

(
t̂/(t̂+1) · σ̂′

−i +1/(t̂+1) , t̂+1
)+ (1− σ̂′

−i)Ṽi
(
t̂/(t̂+1) · σ̂′

−i , t̂+1
)− ci

}
=λBi(Ṽi)[(σ̂−i, t̂)]+ (1−λ)Bi(Ṽi)[(σ̂′

−i, t̂)].

Let B(k+1)
i (Ṽi) := Bi(B(k)

i (Ṽi) for k ∈ N with B(1)
i ≡ Bi. As the optimal stopping time is uni-

formly bounded (Proposition 3), Vi(σ̂−i, t̂) = B(k)
i (vi)[(σ̂−i, t̂)] for some k ∈N. As vi(σ̂−i, t̂) is

clearly convex and increasing in σ̂−i for any t̂, then so is Vi(σ̂−i, t̂). �

A third needed property to establish the claims in Proposition 7 is the following:

Lemma 20. For any σ̂−i ∈ (0,1) and t̂ > 0, Vi(σ̂−i, t̂) is non-increasing in t̂.

Proof. First, note that vi(σ̂−i, t̂) = max{ui(1, σ̂−i),ui(0, σ̂−i)}, that is, vi(σ̂−i, t̂) is invariant

with respect to t̂. Let z(t) be a random variable such that z(t) = t/(t+1)σ̂−i +1/(t+1) with

probability σ̂−i and z(t)= t/(t+1)σ̂−i with complementary probability and let Ṽi(σ̂−i, t̂) be in-

creasing and convex in the first argument, non-increasing in the second. Then, E[z(t)]= σ̂−i

and for t′ > t, z(t) is a mean-preserving spread of z(t′) and thus E[Ṽi(z(t′), t′)]≤ E[Ṽi(z(t), t′)]≤
E[Ṽi(z(t), t)]. Hence,

Bi(Ṽi)[(σ̂−i, t̂)]=max{vi(σ̂−i, t̂) , σ̂−iṼi
(
t̂/(t̂+1)σ̂−i +1/(t̂+1) , t̂+1

)+ (1− σ̂−i)Ṽi
(
t̂/(t̂+1)σ̂−i , t̂+1

)− ci}

=max{vi(σ̂−i, t̂) , E[Ṽi(z(t̂), t̂)]− ci}

≥max{vi(σ̂−i, t̂′) , E[Ṽi(z(t̂′), t̂′)]− ci}

= Bi(Ṽi)[(σ̂−i, t̂′)].
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By the same argument as in Lemma 19, we have that Vi(σ̂−i, t̂) is decreasing in t̂. �

Let σ−i,σ−i : R++ → [0,1]∪ {;} be such that σ−i(t) := sup{σ̂−i ∈ [0,1] | Vi(σ̂−i, t) > vi(σ̂−i, t)}

and σ−i(t) := inf{σ̂−i ∈ [0,1] | Vi(σ̂−i, t)> vi(σ̂−i, t)}. As Vi(1, t)= vi(1, t)= ui(1,1) and Vi(0, t)=
vi(0, t)= ui(0,0), σ−i and σ−i are well-defined for all t ∈ (0,Ti), where Ti denotes the small-

est upper bound on optimal stopping across all Beta priors as obtained in Proposition

11, recalling that a Beta distribution is just a Dirichlet distribution over two categories.

In particular, it is easy to check that, when the prior is given by a Beta distribution, the

value of taking one additional sample and then stopping, Eµi [vi(µi | X i)]−vi(µi), is highest

when the prior mean is centered at player i’s indifference point, that is, σ̂−i = σ̃−i, where

σ̃−i : ui(1, σ̃−i)= ui(0, σ̃−i). For any t̂ ∈ (Ti −1,Ti),

Vi(σ̂−i, t̂)=max{vi(σ̂−i, t̂) , σ̂−ivi(t̂/(t̂+1)σ−i +1/(t̂+1), t̂+1)+ (1− σ̂−i)vi(t̂/(t̂+1)σ−i, t̂+1)− ci}

and from analyzing such an expression, one can check that Vi(σ̂−i, t̂)> vi(σ̂−i, t̂) =⇒ Vi(σ̃−i, t̂)>
vi(σ̃−i, t̂), which implies claim (ii). Moreover, Ti = (δ1+δ0)·σ̃−i ·(1−σ̃−i)−ci

ci
as we show in the fol-

lowing lemma:

Lemma 21.

Ti = sup {t > 0 : sup{σ̂−i ∈ [0,1] : Vi(σ̂−i, t)−vi(σ̂−i, t)}> 0}

= sup {t > 0 : Vi(σ̃−i, t)−vi(σ̃−i, t)> 0}

= (δ1 +δ0) · σ̃−i · (1− σ̃−i)− ci

ci

for any ci < (δ1 +δ0) · σ̃−i · (1− σ̃−i).

Proof. Note that, for any σ̂−i ≥ σ̃−i, Vi(σ̂−i, t̂)− vi(σ̂−i, t̂) = Wi(σ̂−i, t̂) and for σ̂−i ≤ σ̃−i,

Vi(σ̂−i, t̂)− vi(σ̂−i, t̂) = Vi(σ̂−i, t̂). As Vi(σ̂−i, t̂) is non-decreasing in σ̂−i and Wi(σ̂−i, t̂) is non-

increasing in σ̂−i, we have that Vi(σ̂−i, t̂)−vi(σ̂−i, t̂)≤Vi(σ̃−i, t̂) for any σ̂−i. Consequently,

sup {t > 0 : sup{σ̂−i ∈ [0,1] : Vi(σ̂−i, t)−vi(σ̂−i, t)}> 0}= sup {t > 0 : Vi(σ̃−i, t)−vi(σ̃−i, t)> 0} .
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Let

Evi(σ̂−i, t̂) := σ̂−ivi(t̂/(t̂+1)σ̂−i +1/(t̂+1), t̂+1)+ (1− σ̂−i)vi(t̂/(t̂+1)σ̂−i, t̂+1)−vi(σ̂−i, t̂),

denoting the value of taking one additional sample and stopping immediately after. It

is clear that Vi(σ̂−i, t̂)− vi(σ̂−i, t̂) ≥ Evi(σ̂−i, t̂) and Evi does not account for the value of

possibly keep sampling depending on the sample realization. Straightforward algebra

shows that Evi(σ̂−i, t̂) ≤ Evi(σ̃−i, t̂), for any σ̂−i ∈ [0,1] and t̂ > 0 and Evi(σ̂−i, t̂) is strictly

decreasing in t̂. Then, if Evi(σ̃−i, t̂) ≤ ci =⇒ Evi(σ̂′
−i, t̂′) ≤ ci for any σ̂′

−i ∈ [0,1] and for any

t̂′ ≥ t̂. As Vi(σ̂−i, t̂) = B(k)
i (vi)[(σ̂−i, t̂)] where B(k)

i is the k-th composition of Bi with itself,

then Evi(σ̃−i, t̂) ≤ ci =⇒ Vi(σ̂′
−i, t̂′) ≤ ci for any σ̂′

−i ∈ [0,1] and for any t̂′ ≥ t̂. Consequently,

Ti : Evi(σ̃−i,Ti)= ci. Thus,

0= Evi(σ̃−i,Ti)− ci = σ̃−i

(
Ti

Ti +1
σ̃−i + 1

Ti +1

)
(δ1 +δ0)− ci

⇔ Ti = (δ1 +δ0) · σ̃−i · (1− σ̃−i)− ci

ci

�

As for any t ∈ (0,Ti), σ−i(t) > σ̃−i > σ−i(t), vi(σ−i(t), t) = ui(1,σ−i(t)). To see that for σ̂−i ∈
(σ−i(t),1), Vi(σ̂−i, t)= ui(1, σ̂−i) note that ∃λ ∈ (0,1) such that σ̂−i =λσ−i(t)+(1−λ)1 and thus

ui(1, σ̂−i)≤Vi(σ̂−i, t)≤λVi(σ−i(t), t)+(1−λ)Vi(1, t)=λui(1,σ−i(t))+(1−λ)ui(1,1)= ui(1, σ̂−i).

The arguments are symmetric for σ−i. Consequently, the continuation region is given by{
(σ̂−i, t̂) ∈ (0,1)× (0,Ti) : σ̂−i ∈ (σ−i(t̂),σ−i(t̂))

}
. The fact that σ−i (σ−i) is decreasing (increas-

ing) in t ∈ (0,Ti) follows from the fact that Vi(σ̂−i, t̂) is decreasing in t̂ and, thus, ∀t̂ < t̂′,

Vi(σ̂−i, t̂)= vi(σ̂−i, t̂) =⇒ Vi(σ̂−i, t̂′)= vi(σ̂−i, t̂′), which then implies claim (i).

Proof of Proposition 8

Suppose that the unique Nash equilibrium is in pure strategies and, without loss of gener-

ality, suppose it is (ai,a−i)= (1,1). Then, for one of the players, say player i, action 0 must

be weakly dominated. Hence, at any sequential sampling equilibrium, player i will play

action 1 with probability 1 regardless of the opponent’s gameplay. As (1,0) must not be an

equilibrium, it must be that u−i(0,1) < u−i(1,1), where the arguments of u−i are (a−i,ai).
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If player −i does not sample, then the player best-responds to the prior µ−i and, by as-

sumption, there is a unique best-response. If player −i does sample and as, by Lemma 3,

player −i will never stop sampling when indifferent between the two actions, then, there

is a unique selection of best-responses at each sample path that induces stopping. Further,

as, at any equilibrium, all player −i’s sampled observations are 1-valued, we have that at

an equilibrium σ−i = f−i(1). By similar arguments as those made in the proof of Theorem

4, whenever player −i samples at least once, we have that the value of the last sampled

observation determines the choice and thus f−i(1)= 1.

Now suppose that the unique Nash equilibrium involves mixed strategies. Then, without

loss of generality, up to relabelling, we have that min{ui(1,1)−ui(0,1),ui(0,0)−ui(1,0)}> 0

and max{u−i(1,1)−u−i(1,0),u−i(0,0)−u−i(0,1)}< 0. Consequently, by Theorem 4(ii), f i(σ−i)

is non-decreasing and continuous and f−i(σi) is non-increasing and continuous. If no

player samples, by assumption, σi = argmaxσ′
i∈[0,1]Eµi [ui(σ′

i, s−i)] ∈ {0,1} and similarly for

−i, making the sequential sampling equilibrium unique. If one of the players samples, say

player −i, and the other does not, then we still have that σi = argmaxσ′
i∈[0,1]Eµi [ui(σ′

i, s−i)] ∈
{0,1} and f−i(σi) ∈ {0,1}. If both players sample, then, by Theorem 4(ii), f i(σ−i) ( f−i(σi))

is continuous and strictly increasing (decreasing) for σ−i ∈ (0,1) (σi ∈ (0,1)). Furthermore,

f i(0) = f−i(1) = 0 and f i(1) = f−i(0) = 1. Hence, there is a unique and interior sequential

sampling equilibrium given by (σi,σ−i)= ( f i(σ−i, f−i(σi)) ∈ (0,1)2.

To show that a converse holds when both players sample at least once, note that by

Lemma 3 implies that the player i (−i) will choose the action that (mis)matches the last

observation sampled. Then, if there are two or more Nash equilibria, it must be that both f i

and f−i are increasing. Consequently, f i(0)= f−i(0)= 0 and f i(1)= f−i(1)= 1, which implies

there are multiple sequential sampling equilibria.

Proof of Proposition 9

For claim (i), note that, whenever both players sample at least once and the underly-

ing game Γ has a unique Nash equilibrium in fully mixed strategies, by Proposition 8,

there is a unique sequential sampling equilibrium where σi = f i(σ−i) ∈ (0,1), i = 1,2. Let

δ′1 > δ1 > 0 and denote the probability with which player 1 chooses action 1 given the pay-

offs to action 1 — keeping all other payoffs constant — and given the opponent’s game-
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play s2 ∈ [0,1] by f1(s2;δ1) and f1(s2;δ′1), respectively. Let (σ1,σ2) = ( f1(σ2;δ1), f2(σ1)) and

(σ′
1,σ′

2) = ( f1(σ′
2;δ′1), f2(σ′

1)) denote the sequential sampling equilibria under δ1 and δ′1 and

suppose, for the purpose of contradiction, that σ1 >σ′
1. Then, σ2 = f2(σ1) < f2(σ′

1) =σ′
2 as,

by Theorem 4(ii), f2 is decreasing in σ1. Finally, σ1 = f1(σ2;δ1)≤ f1(σ2;δ′1)< f1(σ′
2;δ′1)=σ′

1,

a contradiction, where the first inequality follows from the fact that f1 is non-decreasing

in δ1 (Proposition 2) and it is strictly increasing in σ2 ∈ (0,1). As σ′
1 ≥ σ1, claim (ii) then

follows directly from Theorem 4(ii).

Proof of Proposition 10

Claim (i) in the proposition follows the same arguments in the proof of Theorem 3. First,

note that when taken individually, fixing their opponents’ gameplay, player i’s posterior

µi upon observing sample path xt
i, accumulates about the empirical frequency. Then, the

posterior mean conditional on the player’s type will too accumulate about the empirical

frequency conditional on the player’s type. By the strong law of large numbers, the em-

pirical frequency converges almost surely to the true probability distribution and by the

continuous mapping theorem, the conditional empirical frequency (which lies on a finite

dimensional space) also converges almost surely to the true conditional probability. It is

then straightforward to adjust the arguments in Lemmata 1 and 2 and Theorem 3 to obtain

the result.

For claim (ii), fix i’s opponents’ gameplay. For θi ∈Θi, let P̃i(θi) := {(θi,θ−i),θ−i ∈Θ−i} and

denote the generic element of ∆(Ξi) by pi. Note that

Pµi

(
{(a−i,θ),θ ∈ e i} | X t

i
)= |e i|+∑t

`=1 1X t
i,`=(a−i ,e i)

|A−i|×
(∑

e′i∈E i |e′i|
)
+ t

a.s.→ ∑
θ′∈e i

ρ(θ′) ·σ−i,θ′−i
(a−i) (i)

Pµi

(
{(a−i,θ),θ ∈ e i} | X t

i ,θi
)= 1e i∈P̃i(θi) ·

Pµi

(
{(a−i,θ),θ ∈ e i} | X t

i

)∑
a′
−i∈A−i ,e′i∈P̃i(θi)Pµi

(
{(a′

−i,θ
′),θ′ ∈ e′i} | X t

i

)
a.s.→ 1e i∈P̃i(θi) ·

∑
θ′∈e i(θi)ρ(θ′) ·σ−i,θ′−i

(a−i)∑
θ′∈P̃i(θi)ρ(θ′)

(ii)

Pµi

(
(a−i,θ) | X t

i ,θi, e i
)= 1e i∈P̃i(θi) ·

1
|e i|

, (iii)

where convergence almost surely is with respect to the true probability distribution and

(i) follows from the strong law of large numbers, (ii) from (i) and the continuous mapping
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theorem and (iii) from the fact that µi is correspond to a uniform distribution, that is, a

Dirichlet distribution on ∆(Ξi) with |Ξi| parameters, (1,1, ...,1), and observation that, as X i

is a E i-valued process, we have that by condition 2, εi = {a−i}× e i. Thus,

Eµi |X t
i ,θi

[ui(σi, s−i,θi,θ−i)]

= ∑
a−i∈A−i ,θ∈P̃i(θi)

Eµi [pi(a−i,θ) | X t
i ,θi]ui(σi,a−i,θ)

= ∑
a−i∈A−i ,θ∈P̃i(θi)

Pµi

(
(a−i,θ) | X t

i ,θi
)
ui(σi,a−i,θ)

= ∑
a−i∈A−i ,e i⊆P̃i(θi)

∑
θ∈e i

Pµi

(
{(a−i,θ),θ ∈ e i} | X t

i ,θi
)
Pµi

(
(a−i,θ) | X t

i ,θi, e i
)
ui(σi,a−i,θ)

= ∑
a−i∈A−i ,e i⊆P̃i(θi)

∑
θ∈e i

Pµi

(
{(a−i,θ),θ ∈ e i} | X t

i ,θi
) 1
|e i|

ui(σi,a−i,θ)

a.s.→ ∑
a−i∈A−i ,e i⊆P̃i(θi)

∑
θ∈e i

1
|e i|

∑
θ′∈e i ρ(θ′) ·σ−i,θ′−i

(a−i)∑
θ′∈P̃i(θi)ρ(θ′)

ui(σi,a−i,θ)

= ∑
a−i∈A−i ,e i⊆P̃i(θi)

∑
θ′∈e i ρ(θ′)∑

θ′∈P̃i(θi)ρ(θ′)

∑
θ′∈e i ρ(θ′) ·σ−i,θ′−i

(a−i)∑
θ′∈e i ρ(θ′)

ui(σi,a−i,θ)

= ∑
a−i∈A−i

∑
(θi ,θ−i)∈P̃i(θi)

ρ(θ−i | θi) ·σ−i(a−i | θi,θ−i) ·ui(σi,a−i,θi,θ−i),

establishing that, if the sample size grows large, the expected payoff converges to to the

expected payoff where the opponents’ gameplay is averaged within each element of the

analogy partition, an analogy-based expected payoff. Again, adjusting the arguments in

Lemmata 1 and 2 to obtain a similar no-regret condition and the arguments in Theorem 3,

one obtains the result in claim (ii).
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C. Other Proofs and Examples
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C.1. Uniform Bound on Optimal Stopping Time with Dirichlet Priors

Proposition 11. There is T(ci,ui)= Ti ∈N such that for any α ∈R|A−i |++ , ∀σ−i ∈Σ−i, if µi is a

Dirichlet distribution with parameters α, Pσ−i (τi ≤ Ti)= 1.

Proof. Let µi denote the measure associated with a Dirichlet distribution with parameter

α ∈R|A−i |++ . For any t ∈N, for any xt
i ∈Xi,

∥∥Eµi

[
σ−i | xt

i
]−Eµi

[
σ−i | xt

i, X i,t+1
]∥∥∞ =

∥∥∥∥∥Eµi

[
σ−i | xt

i
]− (‖α‖1 + t) ·Eµi

[
σ−i | xt

i

]+ X i,t+1

‖α‖1 + t+1

∥∥∥∥∥∞

=
∥∥∥∥∥Eµi

[
σ−i | xt

i

]− X i,t+1

‖α‖1 + t+1

∥∥∥∥∥∞

≤ 1
t+1

.
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Then, as in Proposition 3, we have

0≤ Eµi |X t
i

[
vi(µi | X t+1

i )−vi(µi | X t
i )

]
≤max

a∈A
|ui(a)| ·Eµi |X t

i

[∥∥∥Eµi |X t+1
i

[σ−i]−Eµi |X t
i
[σ−i]

∥∥∥∞

]
≤max

a∈A
|ui(a)| · 1

t+1
.

This then implies that ∀t ≥ Ti =
⌈maxa∈A |ui(a)|−c

c
⌉
, the expected value of sampling informa-

tion is lower than the sampling cost regardless of the realized sample paths and of α, by a

similar argument as that in Proposition 3, we then have that the optimal stopping time τi

is always lower than Ti, for any distribution of the samples. �

C.2. Misspecified Priors

I will now introduce a class of misspecified priors under which existence of a sequential

sampling equilibrium is assured. I focus on the case of misspecified priors that allow for

correlation, although the definitions and proofs are easily adjustable to the case where

priors do not allow for correlation.

Bounded Optimal Stopping Time with Misspecified Priors

For σ−i ∈ Σ−i, let Bε(σ−i) be defined as in the proof for Proposition 3 and let Ba−i
ε (s−i) :={

s′−i ∈ Bε(s−i)
∣∣∣ s′−i(a

′
−i)≥ s−i(a′

−i), ∀a′
−i ∈ A−i \{a−i}

}
.

Assumption 1. For any player i ∈ I,

(i) µi( int (Σ−i))> 0;

(ii) supp (µi) is convex; and

(iii) ∀ε ∈ (0,1/(2 · |A−i|), infσ−i∈supp (µi) maxa−i∈A−i :σ−i(a−i)≥1/|A−i |µi
(
Ba−i
ε (σ−i)

)=:φ(ε)> 0.

Assumption 1(i) is simply to have Bayesian updating well-defined for any possible sample

path; 1(ii) will imply that the posterior accumulates around a single point; and 1(iii) is

a weakening of full support that accommodates misspecified priors. Specifically, Ba−i
ε (s−i)

denotes the set of distributions such that the action profile is chosen with lower probability

— with a decrease up to ε — and all other action profiles are chosen with weakly greater
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probability. Condition 1(iii) posits that the agent always deems it possible that some action

profile with probability greater than 1/|A−i| is chosen less and all others are chosen with

weakly greater probability. The counterpart of Assumption 1 for when µi does not allow

for correlation is to impose that it holds for each µi j, j ∈−i; the results follow from similar

arguments in this case.

Let q :Σ−i → supp (µi) be such that q(σ−i)=minσ′
−i∈supp (µi) H(σ−i,σ′

−i), where H(σ−i,σ′
−i) :=∑

a−i∈A−i σ−i(a−i) ln(σ′
−i(a−i)), with the convention that 0 ·∞= 0. Furthermore, let

g(ε) := inf
σ−i∈Σ−i ,σ′

−i∉Bε(q(σ−i))
DKL(σ−i‖σ′

−i),

where DKL(σ−i‖σ′
−i) = H(σ−i,σ′

−i)− H(σ−i,σ−i). I will adjust the steps in Diaconis and

Freedman (1990) to show the following result:

Lemma 22. Let µi ∈ ∆(Σ−i) satisfy Assumption 1. Then, for any ε < 1/(2 · |A−i|), any t ∈ N
and any X

t
i ∈Σ−i,

µi

(
Bε(q(X

t
i)) | X t

i

)
1−µ

(
Bε(q(X

t
i)) | X t

i

) ≥ψh(ε) ·exp
(
t ·2ε2) ,

where ψh(ε) = φ(min{ε,1/2 · h · g(ε)}) > 0 , g(ε) := infσ−i∈Σ−i ,σ′
−i∉Bε(σ−i) DKL(σ−i‖σ′

−i) > 0, and

h ∈ (0,1).

Proof. First, note that

µi

(
Bε(q(X

t
i)) | X t

i

)
1−µ

(
Bε(q(X

t
i)) | X t

i

) =
∫

Bε(q(X
t
i))

∏
a−i∈A−i σ−i(a−i)

∑t
`=1 1Xi,`=a−i dµi(σ−i)∫

Σ−i\Bε(q(X
t
i))

∏
a−i∈A−i σ−i(a−i)

∑t
`=1 1Xi,`=a−i dµi(σ−i)

=
∫

Bε(q(X
t
i))

exp
(
t ·∑a−i∈A−i X

t
i(a−i) · ln(σ−i(a−i))

)
dµi(σ−i)∫

Σ−i\Bε(q(X
t
i))

exp
(
t ·∑a−i∈A−i X

t
i(a−i) · ln(σ−i(a−i))

)
dµi(σ−i)

=
∫

Bε(q(X
t
i))

exp
(
−t ·H(X

t
i,σ−i)

)
dµi(σ−i)∫

Σ−i\Bε(q(X
t
i))

exp
(
−t ·H(X

t
i,σ−i)

)
dµi(σ−i)

≥
∫

Bε(q(X
t
i))

exp
(
−t ·H(X

t
i,σ−i)

)
dµi(σ−i)

exp
(
−t ·

(
H(X

t
i, q(X

t
i))+ g(ε)

)) ,
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where the inequality follows from the fact that ∀σ−i ∉ Bε(q(X
t
i)), H(X

t
i,σ−i)≥ H(X

t
i, q(X

t
i))+

g(ε), ∀σ−i ∈ supp (µi). Moreover, as H is convex and differentiable in the second argument,

we have that, ∀σ−i ∈ Bh(q(X
t
i)),

H(X
t
i,σ−i)≤ H(X

t
i, q(X

t
i))+ | ∇σ−i H(X

t
i,σ−i) · (q(X

t
i)−σ−i) |

≤ H(X
t
i, q(X

t
i))+‖∇σ−i H(X

t
i,σ−i)‖∞ ·h

Fix h ∈ (0,1), let ε∗ = min
{
ε , 1

2 h · g(ε)
}

and a′′
−i ∈ A−i be such that µi

(
B

a′′
−i

ε∗ (q(X
t
i))

)
≥ φ(ε∗)

and X
t
i(a

′′
−i)≥ 1/|A−i|. Then, ∀σ−i ∈ B

a′′
−i

ε (q(X
t
i))

∥∥∥∇σ−i H(X
t
i,σ−i)

∥∥∥∞ =
∥∥∥∥
− X

t
i(a−i)

σ−i(a−i)
+

1−∑
a′
−i∈A−i\{a′′

−i}
X

t
i(a

′
−i)

1−∑
a′
−i∈A−i\{a′′

−i}
σ−i(a′

−i)


a−i∈A−i\{a′′

−i}

∥∥∥∥
∞

and as −1 ≤ X
t
i(a−i)

σ−i(a−i)
≤ − X

t
i(a−i)

X
t
i(a−i)+h

≤ 0 ∀a−i , a′′
−i and as ∂

∂a
1−a

1−a−b > 0 for any 1−a ≥ 1/|A−i| >
1/(2·|A−i|)≥ b > 0 and as 1−∑

a′
−i∈A−i\{a′′

−i}
X

t
i(a

′
−i)= X

t
i(a

′′
−i)≥ 1/|A−i| and 1−∑

a′
−i∈A−i\{a′′

−i}
σ−i(a′

−i)=
X

t
i(a

′′
−i)−b, 1/(2 · |A−i|)≥ b > 0, we have that

∣∣∣∣∣∣
1−∑

a′
−i∈A−i\{a′′

−i}
X

t
i(a

′
−i)

1−∑
a′
−i∈A−i\{a′′

−i}
σ−i(a′

−i)

∣∣∣∣∣∣≤
∣∣∣∣ 1/|A−i|
1/|A−i|−b

∣∣∣∣≤ 2

and thus ‖∇σ−i H(X
t
i,σ−i)‖∞ ≤ 2 and H(X

t
i,σ−i) ≤ H(X

t
i, q(X

t
i))+2ε∗ ≤ H(X

t
i, q(X

t
i))+h · g(ε)

and therefore

µi

(
Bε(q(X

t
i)) | X t

i

)
1−µ

(
Bε(q(X

t
i)) | X t

i

) ≥
∫

Bε(q(X
t
i))

exp
(
−t ·H(X

t
i,σ−i)

)
dµi(σ−i)

exp
(
−t ·

(
H(X

t
i, q(X

t
i))+ g(ε)

))

≥

∫
B

a′′−i
ε∗ (q(X

t
i))

exp
(
−t ·H(X

t
i,σ−i)

)
dµi(σ−i)

exp
(
−t ·

(
H(X

t
i, q(X

t
i))+ g(ε)

))

≥

∫
B

a′′−i
ε∗ (q(X

t
i))

exp
(
−t ·

(
H(X

t
i, q(X

t
i))+hg(ε)

))
dµi(σ−i)

exp
(
−t ·

(
H(X

t
i, q(X

t
i))+ g(ε)

))
=µi

(
B

a′′
−i

ε∗ (q(X
t
i))

)
·exp(t · (1−h)g(ε))

≥φ(ε∗) ·exp(t · (1−h)g(ε)) .
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The proof concludes by replacing h = g(ε)−2ε2 > 0, by Proposition 3.4 and Corollary 3.5 in

Diaconis and Freedman (1990), noting g(ε)< 1 for ε< 1/(2 · |A−i|). �

Existence of a Sequential Sampling Equilibrium under Misspecified Priors

From Lemma 22, an analogous result to Proposition 3 follows:

Proposition 12. Suppose that µi satisfies Assumption 1. Then, ∃T(ui,µi, ci)= Ti ∈N0 such

that ∀σ−i ∈Σ−i, Pσ−i (τi ≤ Ti)= 1.

The proof follows the exact same steps as that of Proposition 3, replacing h(ε, t) with

φ(ε∗)·exp(t · (1−h)g(ε)) from Lemma 22, using q(X
t
i) instead of X

t
i, and d(2/(t+1)) instead of

2/(t+2), where d(e) :=maxσ−i∈Σ−i ,σ′
−i∈Be(σ−i) |q(σ−i)−q(σ′

−i)| is continuous and lime→∞ d(e)=
0.

Finally, the result on sufficient conditions for existence under non-degenerate misspeci-

fied priors ensues:

Proposition 13. Let G be an extended game such that Assumption 1 holds. Then, a

sequential sampling equilibrium exists.

The proof is analogous to that of Theorem 1 and therefore omitted.

C.3. Relation Between Strong Robustness and Singleton Stable Sets

Trembling-hand perfect Nash equilibria in normal-form games are defined as the limit

of Nash equilibria of some sequence of perturbed games. In this sequence of perturbed

games, players are constrained to choosing from the set of probability distributions which

place strictly positive but vanishing probability on every action.25

As is well-known, this definition is equivalent to another: Trembling-hand perfect Nash

equilibria are those that, for each player, the Nash equilibrium strategy is a best-response

to some sequence of totally mixed strategies of the opponents’ that converges to the oppo-

nents’ Nash equilibrium strategy. It is then immediate that strong robustness relaxes this

second definition of trembling-hand perfection in requiring that, for each player, the Nash

25In this, I follow the textbook treatment given by Mas-Colell et al. (1995, Section 8.F) rather than the
original paper, Selten (1975), which focuses on extensive-form games.
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equilibrium strategy is a best-response to any sequence of totally mixed strategies of the

opponents’ that converges to the opponents’ Nash equilibrium strategy, provided that all

elements of the sequence remain close enough to their limit.

Kohlberg and Mertens’s (1986) definition of stable set relates to the first definition of

trembling-hard perfection above. A stable set S corresponds to a closed set of Nash equi-

libria satisfying the following condition: for any ε > 0 there is δ0 > 0 such that for any

σ ∈ int (Σ) and any δ1, ...,δn, 0< δk < δ0, the perturbed game where players are constrained

to choosing strategies in the set
{
(1−δk) ·σ′

i +δkσi, σ′
i ∈Σi

}
has a Nash equilibrium that is

ε-close to S. It should be clear that if a strategy profile is a singleton stable set, then it is

also trembling-hand perfect.

While strong robustness and singleton stable sets refine trembling-hand perfect equilibria

in the same spirit, they are not equivalent. In fact, the former is strictly stronger than the

latter.

That a strongly robust Nash equilibrium corresponds to a singleton stable set is immedi-

ate as every players’ equilibrium strategy is a best response to any strategy profile of the

opponents that is close enough to the opponents’ equilibrium strategy profile.

To see that the converse does not hold, consider the game in Figure 11. Player 2 is indif-

ferent between any strategy, whereas player 1 strictly prefers to match actions whenever

player 2 chooses a or b and is indifferent between the two actions when player 2 chooses

c. It is immediate that (A, c) is a Nash equilibrium that is not strongly robust as for any ε, A

is not a best-response to any σ2 such that ε/2>σ2(b)>σ2(a). However, (A, c) is a singleton

stable set. This follows because, for any ε> 0, there is a small enough δ0 < ε such that, for

any perturbed choice set for player 2 as specified above, there is always some strategy σ2

to which A is a strict best-response that is within ε of σ∗
2 : σ∗

2(c) = 1. Given that player 2

is indifferent between any action, player 2 choosing σ2 and player 1 choosing the strategy

that places the largest probability possible on A is an equilibrium of the constrained game

and such an equilibrium is ε-close to (A, c).
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Player 2
a b c

Player 1
A 1 , 1 0 , 1 1 , 1
B 0 , 1 1 , 1 1 , 1

Figure 11.

C.4. Myopic Sequential Sampling and Non-Convergence to Nash Equi-

librium

In this appendix, I consider the case where players acquire information in a myopic manner

and briefly sketch an argument as to why convergence to Nash equilibrium fails to hold

as sampling costs vanish. The earliest myopic stopping rule for player i, τM
i , would then

correspond to:

τM
i := inf

{
t ∈N0

∣∣∣ vi(µi | X t
i )≥ Eµi [vi(µi | X t+1

i ) | X t
i ]− ci

}
while the latest stopping rule, τM

i , is obtained by just replacing the weak inequality with a

strict one.

A myopic sequential sampling equilibrium of an extended game G is then a distribution

of actions σ ∈ Σ whereby, for all i ∈ I, there is a some selection of best responses bi(µi |
xi) ∈ argmaxσi∈Σi Eµi [ui(σi, s−i) | xi], for all xi ∈Xi, such that σi = Eσ−i [bi(µi | X

τM
i

i )], with τM
i

being some myopic stopping rule.

For any ci > 0, a necessary condition for player i to keep sampling up to time T is player

i faces a sample path xT
i ∈Xi such that, ∀t = 1, ...,T −1, Eµi [s−i | xt

i] ∈ Mi(ai) =⇒ ∃a−i ∈ A−i

such that Eµi [s−i | xt
i,a−i] ∉ Mi(ai). That is, it is only worthwhile to keep sampling under

a myopic information acquisition if there is a possibility of obtaining evidence that would

change the player’s beliefs in a way that optimal actions under the prior would no longer

be optimal under the posterior. It is therefore immediate that any full-support prior that is

sufficiently concentrated around a point in the interior of some region of Σ−i where action

ai is a strict best response, for any ci > 0, player i will not see it worthwhile to acquire

information. Thus, if in no Nash equilibrium is it optimal to play such an action with

probability 1, myopic sequential sampling will fail to converge to a Nash equilibrium.
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A concrete example is as follows. Suppose that the underlying game is a 2×2 game with

A1 = A2 = {0,1} and with a unique Nash equilibrium in mixed strategies given by {σ∗
1 ,σ∗

2},

σ∗
i ∈ int (Σi), i = 1,2. Then, σ∗

2 is such that u1(0,σ∗
2) = u1(1,σ∗

2). If player 1’s prior is

given by a Beta(α,β), where (α,β) = t ·σ0
2 satisfying σ0

2(1) > σ∗
2(1) t+1

t , then for any ci > 0,

Eµ1[v1(µ1 | X1)]= v1(µ1)= u1(1,σ0
2). Thus, the value of a single sample is 0 and strictly below

the sampling cost for any ci > 0, which then implies that player 1 will not sample and just

choose to take action 1. Hence, at any myopic sequential sampling equilibrium, σ1(1) = 1,

which therefore implies that, in the limit, as sampling costs vanish, σ1(1)= 1,σ∗
1(1), which

is interior, by assumption.
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D. Additional Data Analysis

Table 5. Own- and Opponent-Payoff Choice Effect: Sessions with Belief Elicitation

(a) Sessions with Belief Elicition Only

Dep. Variable: {Player M chooses a} {Player C chooses a}
OLS Logit OLS Logit

δM /(1+δM) -0.22 -0.89 -0.94 -4.49
(0.04) (0.18) (0.03) (0.22)

Intercept 0.58 0.34 0.94 2.12
(0.02) (0.08) (0.02) (0.10)

N 1620 1620 1680 1680
(Pseudo) R2 0.02 0.01 0.30 0.23

(b) All Sessions

Dep. Variable: {Player M chooses a} {Player C chooses a}
OLS Logit OLS Logit

δM /(1+δM) 0.02 0.06 -0.85 -3.91
(0.03) (0.12) (0.03) (0.15)

Intercept 0.45 -0.20 0.89 1.79
(0.01) (0.06) (0.01) (0.07)

N 3402 3402 3486 3486
(Pseudo) R2 0.00 0.00 0.24 0.19

Note: Data from Friedman and Ward (2019). Heteroskedasticity-robust standard
errors in parentheses.
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Figure 12. Opponent-Payoff Time Effect: Sessions with Belief Elicitation

Note: The figure shows the frequency with which subjects in the role of player C take action b before
time t (in seconds) in different games. Games are indexed by player M’s payoff values of δM /(1+δM).
The left panel corresponds to instances where beliefs are elicited; the right panel pools all data. Data
from Friedman and Ward (2019).
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